Topological Entropy of Simple Braids

Luke Robitaille
mentor: Dr. Minh-Tâm Trinh
MIT PRIMES

October 16, 2021

What is a braid?

We can think of a braid as formed by n strands (think of pieces of string) that can cross over and under one another.

Braids are related to other topological objects, including knots and links.

[images from https://arxiv.org/abs/1103.5628]

What is a braid?

The braids on n strands form a group B_{n}. For example, the product of

is

[images made using
https://users.math.msu.edu/users/wengdap1/filling_to_cluster.html]

What is a braid?

The multiplication operation in B_{n} is not commutative in general.
The group B_{n} is generated by $n-1$ elements $\sigma_{1}, \ldots, \sigma_{n-1}$.

$$
\sigma_{i}=[\cdots]_{i}^{-}{\underset{i+1}{ }[\cdots] .] .[.]}^{-}
$$

They satisfy the relations $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for $|i-j| \geq 2$; they also satisfy $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$ for $1 \leq i \leq n-2$.

[images from https://arxiv.org/abs/1103.5628]

What is a simple braid?

There is a natural map from B_{n} to S_{n} (the group of permutations of $\{1, \ldots, n\}$) where σ_{i} maps to the transposition swapping i and $i+1$.

The simple braids are natural preimages of the n ! elements of S_{n}.

[image made using https://users.math.msu.edu/users/wengdap1/filling_to_cluster.html]

What is a simple braid?

One notable simple braid is the half twist, which corresponds to the permutation $i \mapsto n+1-i$. For $n \geq 3$, the square of the half twist generates the center of B_{n}.

[image from https://arxiv.org/abs/1302.6536]

The Nielsen-Thurston classification

Braids can be classified as

- periodic,
- reducible and not periodic, or
- pseudo-Anosov.

The Nielsen-Thurston classification

A braid is periodic if it can be raised to some power to equal some power of the full twist. For example, cubing this braid

gives the full twist.

[images made using
https://users.math.msu.edu/users/wengdap1/filling_to_cluster.html]

The Nielsen-Thurston classification

A braid is reducible if it is possible to draw some loops to get something like the image below.

[image from Juan González-Meneses, "The nth root of a braid is unique up to conjugacy"]

The Nielsen-Thurston classification

A braid that is not periodic or reducible is pseudo-Anosov.

[image made using https://users.math.msu.edu/users/wengdap1/filling_to_cluster.html]

Topological entropy

If a braid is periodic or is reducible with all components periodic, it's "orderly" and has topological entropy zero. Otherwise (if it is pseudo-Anosov or is reducible with at least one pseudo-Anosov component), it's "chaotic" and has positive topological entropy.

Topological entropy

If a braid is periodic or is reducible with all components periodic, it's "orderly" and has topological entropy zero.

[image made using https://users.math.msu.edu/users/wengdap1/filling_to_cluster.html]

Topological entropy

Otherwise (if it is pseudo-Anosov or is reducible with at least one pseudo-Anosov component), it's "chaotic" and has positive topological entropy.

[image from Benson Farb and Dan Margalit, A Primer on Mapping Class Groups]

Topological entropy

Topological entropy of braids has applications in real life to the mixing of fluids.

The property of having topological entropy zero is preserved under raising to a power.

The Burau representation

There is a useful homomorphism from B_{n} to the group of invertible $(n-1) \times(n-1)$ matrices whose entries are polynomials with integer coefficients in t and t^{-1}.

$$
\begin{gathered}
\sigma_{1} \mapsto\left[\begin{array}{cccc}
-t & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \sigma_{2} \mapsto\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
t & -t & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
\sigma_{3} \mapsto\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & t & -t & 1 \\
0 & 0 & 0 & 1
\end{array}\right], \sigma_{4} \mapsto\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & t & -t
\end{array}\right]
\end{gathered}
$$

Kolev found a relationship between the topological entropy of a braid and the eigenvalues of its image under the Burau representation, for t on the unit circle in the complex numbers.

Simple braids and the Burau representation

Theorem (R.-Trinh)
The images of simple braids obey certain patterns, as the example below illustrates.

1	2	3	4	5	6	7	8
4	7	2	5	8	6	1	3

	2						8
2	0	0	0	0	0	-t	1
3	0	$-t^{2}$	t	0	0	-t	1
	0	$-t^{3}$	t^{2}	0	0	$-t^{2}$	0
5	t^{3}	$-t^{3}$	t^{2}	0	0	$-t^{2}$	0
6	t^{4}	$-t^{4}$	0	t^{2}	0	$-t^{2}$	0
	t^{5}	$-t^{5}$	0	t^{3}	$-t^{3}$	0	0
8	0	0	0	t^{3}	$-t^{3}$	0	0

Simple braids and the Burau representation

Theorem (R.-Trinh)
The images of simple braids obey certain patterns, as the example below illustrates.

1	2	3	4	5	6	7	8
4	7	2	5	8	6	1	3

	2						8
2	0	0	0	0	0	-t	1
3	0	$-t^{2}$	t	0	0	-t	1
4	0	$-t^{3}$	t^{2}	0	0	$-t^{2}$	0
5	t^{3}	$-t^{3}$	t^{2}	0	0	$-t^{2}$	0
	t^{4}	$-t^{4}$	0	t^{2}	0	$-t^{2}$	0
$\begin{aligned} & 0 \\ & 7 \end{aligned}$	t^{5}	$-t^{5}$	0	t^{3}	$-t^{3}$	0	0
8	0	0	0	t^{3}	$-t^{3}$	0	0

Main theorem

Theorem (R.-Trinh)
The proportion of simple braids in B_{n} that have positive topological entropy goes to 1 as n goes to infinity.

Acknowledgments

Thank you to

- my mentor, Dr. Minh-Tâm Trinh,
- the MIT PRIMES program, and Prof. Pavel Etingof, Dr. Slava Gerovitch, and Dr. Tanya Khovanova in particular,
- Prof. Stephen Bigelow, Prof. Benson Farb, and Dr. Reid Harris for answering our questions,
- Prof. Dimitar Grantcharov, for his support,
- and last but not least, my family, for their great support.

