

Distributed Signature Scheme with Monotonic Access Pattern

Yavor Litchev Mentor: Yu Xia MIT PRIMES Conference October 16 - 17, 2021

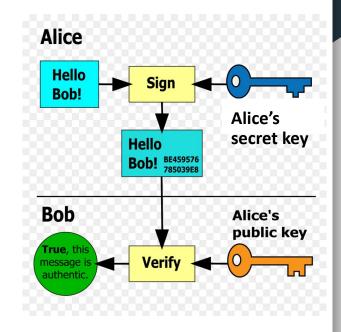
Introduction

- Digital signatures provide a practical way for a party to sign messages in an efficient manner using a private key.
- A wide variety of digital signature schemes currently exist, from RSA to El-Gamal to Schnorr.
- More recently, multi-party signature schemes have been developed.
- The proposed distributed signature scheme with monotonic access pattern allows for the modeling of complex functions.
- This results in a greater degree of access control.

What is a Digital Signature?

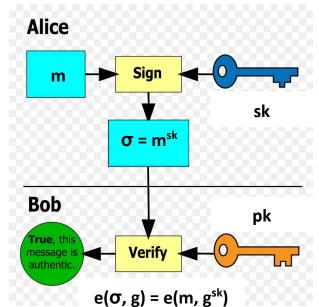
Digital Signature

- A digital signature scheme consists of 3 algorithms:
 - ➤ K, a key generation algorithm
 - **S**, a signature generation algorithm
 - ➢ V, a verification algorithm
- Alice generates pk and sk (public and secret keys respectively) using K.
- Siven a message m, Alice encrypts it $\sigma = S(m, sk)$.
- Alice sends Bob σ, m, and pk, where pk is a public key.



Boneh–Lynn–Shacham (BLS) Signature Scheme

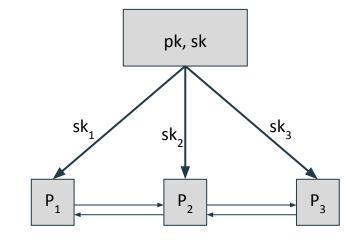
- Silinear map: $(G_1 \times G_2 \rightarrow G_3) = e(a,b)^{xy}$
- The BLS signature scheme is comprised of three algorithms (K, S, V):
 - K: Prime p and generator g are chosen. sk is sampled and pk = g^{sk}
 - \blacktriangleright **S**: σ = m^{sk} is publicized
 - > V: $e(\sigma, g) = e(m, g^{sk})$. (Evaluates to $e(m, g)^{sk}$)
- lacksimKey Homomorphism: $\sigma_1 st \sigma_2 = m^{sk_1} st m^{sk_2} = m^{sk_1+sk_2}$



What is a Distributed Signature Scheme?

Distributed Signature Scheme

- Generalized construct for a signature scheme with multiple participants
- Access structure: A defines qualified subsets
- K: pk and sk are generated, then distribute sk₁, sk₂, ... sk_n for parties P₁, P₂, P_n.
- S: A qualifying subset for access structure A collaborate with their respective secret keys, and reconstruct $\sigma = m^{sk}$.
- V: The verification process is commenced with the public key pk on m and σ .



 $\sigma = m^{sk}$

Monotonic Signature Scheme

Monotonic Function Access Structure

• Unate function: A boolean function $f(x_1, x_2, \dots, x_n)$ is unate if for any x_i:

 $f(x_1, x_2 \dots x_{i-1}, 1, x_{i+1}, \dots x_n) \geq f(x_1, x_2 \dots x_{i-1}, 0, x_{i+1}, \dots x_n)$

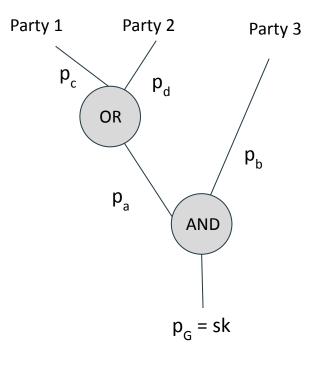
Crucially, it can be generated with only AND, OR, and FANOUT (replication) gates.

Monotone access structure: An access structure A such that if set B is qualified, then sets containing B with additional elements are also qualified. We form a bijective correspondence:

$$I\in A\iff f(I)=1$$

Overview of Monotone Signature Scheme

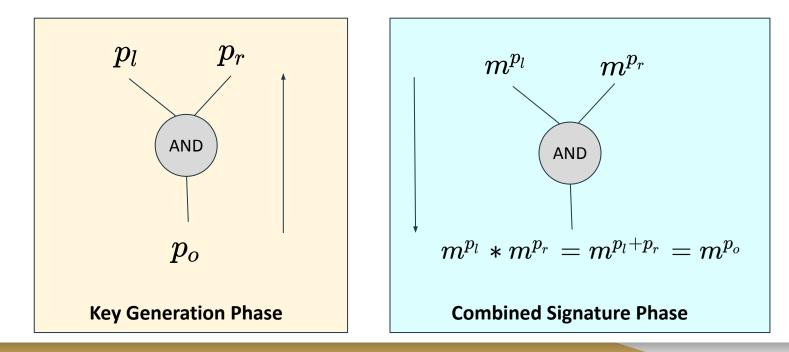
- ✤ A BLS instance is created.
- A circuit (analogous to a garbled circuit) is used to generate secret keys for each party.
- Using the same circuit, a joint signature may be generated.
- K: pk and sk are created from a BLS instance. sk is then assigned to the "bottom" of the circuit, party keys are generated by traveling "up" the circuit.
- S: Given a qualifying subset, each party generates their partial signature, and they are recombined by traversing down the same circuit.
- V: The signature is compared with the grandmaster public key using a bilinear map.



AND Gate

K: We choose private keys p_l and p_r such that $p_l + p_r = p_o$, and they are passed up the circuit.

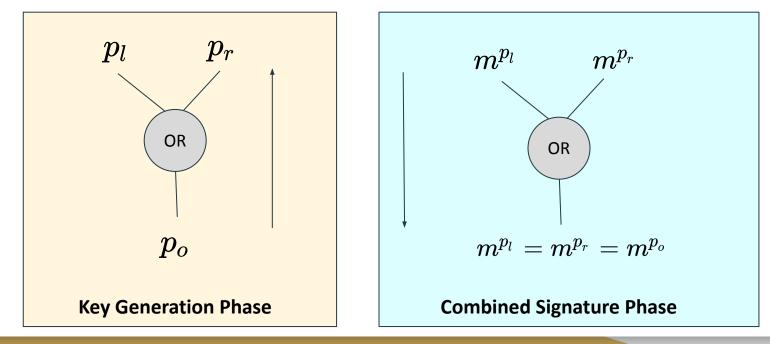
S: The gate outputs the product of the two input signatures.



OR Gate

K: we simply set $p_l = p_r = p_o$ and pass the keys up the circuit.

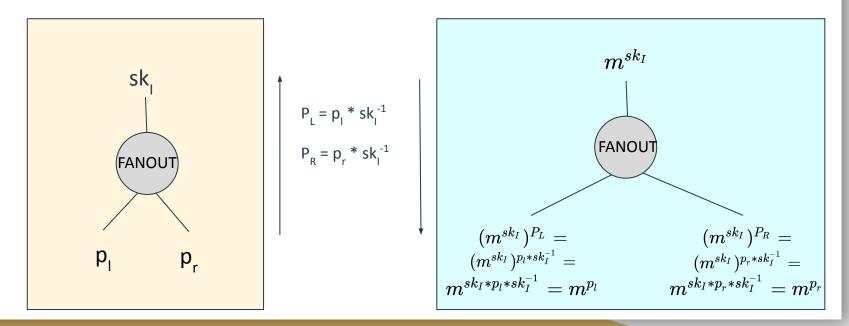
S: We choose either signature, and set the output signature equal to it.



FANOUT Gate

K: We produce a random value s_{l_i} as the secret key for the input wire, and publicize two variables $P_{l_i} = p_{l_i} * sk_{l_i}^{-1}$ and $P_{R_i} = p_{r_i} * sk_{l_i}^{-1}$.

S: We exponentiate the input signature by each of the respective public variables.



Limitations and Problems

Leakage from FANOUT Gates

- For every FANOUT gate we publish two public values $P_{L} = p_{I} * sk_{I}^{-1}$ and $P_{R} = p_{r} * sk_{I}^{-1}$.
- However, $P_{L} * P_{R}^{-1} = p_{I} * p_{r}^{-1}$ may be computed.
- Can potentially be mitigated with key-length doubling, or the use of additional secret encryption keys.

Conclusion

Applications

- Threshold signature schemes are limited in their capacity to model complex access structures.
- The proposed scheme allows to model more sophisticated access structures.
- In addition to signing documents, the signature scheme can be used for hierarchical access control (ex. entering an office building, file access in a server, etc).

Future Research

- Utilization of randomized signature schemes for additional security (e.g. Schorr).
- Solving of existing problems such as Dolev-Strong.
- Reduce number of published values in FANOUT gates.

Acknowledgements

I would like to thank:

- My mentor Yu Xia
- The PRIMES program
- My family

THE END