Versatile Anonymous Authentication
with Cloak

Simon Beyzerov and Eli Yablon
Mentor: Sacha Servan-Schreiber

Motivation

o Online authentication is ubiquitous

o Typically makes no considerations for user privacy

o Metadata is powerful

o Contextualizes surface-level data
o Can be used to draw powerful inferences when cross-referenced with more concrete
information

o Metadata is often leaked in typical authentication mechanisms

Metadata

[secret conversation]

Motivation

o Online authentication is ubiquitous

o Typically makes no considerations for user privacy

o Metadata is powerful

o Contextualizes surface-level data
o Can be used to draw powerful inferences when cross-referenced with more concrete
information

o Metadata is often leaked in typical authentication mechanisms

Example

Username: calvin
Password: ball

-
—

Authorized user! ’

User: calvin

Password: ball

Time: 14:05:19 UTC

IPv6: €280:5da9:7fe:a1c9:bb1:7¢90:a626:5de1

ee——

Requested Content — |e———————

Anonymous Authentication

o Ability to anonymize this exchange

o Prevent server from learning which user is authenticating
s Only that someone is authenticating
o Can other information about the user be hidden?

o Limit metadata leakage

o Collected metadata can allow complex relationships to be drawn about users

e« What about Multi-Factor Authentication?

o Using another medium to verify your identity after the initial authentication step
o Leaks data to third parties °

Example

Username: calvin
Password: ball

-
—

Authorized user! ’

User: calvin

Password: ball

Time: 14:05:19 UTC

IPv6: €280:5da9:7fe:a1c9:bb1:7¢90:a626:5de1

ee——

Requested Content — |e———————

Example

—{ A — -

0

Username: “******
Password . khkkkkkkkkkkk

Authorized user! ’ Time: 14:05:19 UTC
IPv6: €280:5da9:7fe:a1¢c9:bb1:7¢90:a626:5de1

emmm———— Requested Content —[e———————

Example

—{ A — -

0

Username: *******
Password: *kkkkkkkkkkk
Time: 14:05:19 UTC

IPv6: i
Masked with VPN or Tor

emmm———— Requested Content —[e———————

Authorized user! ’

Existing Solutions

 Anonymous Credentials

e Multi-Party Computation

o Cryptographic Accumulators

Anonymous Credentials

o Anonymous Credentials

o Requires storing and managing keys on the client
m Credentials are like “tokens” that can be issued and spent, but must be stored
o Do not have efficient revocation of credentials
o Do notintegrate well with current username-password systems
o Unclear how to extend to more complex applications such as authenticated retrieval

Our Goal

Allow Calvin to authenticate to MIT without revealing who is logging in.

Design, Threat Model, Assumptions

« We consider a setting with two non-colluding authentication servers
o For example: MIT & Duo:
m MIT handles password authentication
m Duois normally responsible for Two-Factor Authentication
m Independent parties, so non-collusion is a reasonable assumption

e In Cloak, both servers are responsible for password authentication and second-factor
authentication, but remain independent and non-colluding

Design, Threat Model, Assumptions

o Assume both servers, individually, are fully malicious

o MIT and Duo try and identify Calvin when he is authenticating.
o Remain non-colluding, so they don’t maliciously interact with each other

e Users are assumed to be malicious by default

o Malicious users want to authenticate, regardless of whether they have an account

Overview: Design, Threat Model, Assumptions

Overview: Design, Threat Model, Assumptions

@}]
S - ‘

-E

Technical overview

1. Use secret-sharing to obliviously “select” the account (username + password)
o Neither server learns which account was selected
o Achieved using Distributed Point Functions which are evaluated by the servers

2. Prove knowledge of the password without revealing any information

o Performed using a new technique for proving knowledge over secret-shares

Background: Secret Sharing

o Distribute shares of a secret value among multiple parties
e Secret can only be revealed by combining shares

o Nothingis learned without all parties coming together

o Toy example:
o Masking a secret in a finite field: (x - r) and (r) form secret shares of x

E:

e Notation: we use [x] to denote a secret-share of x

Step 1: privately selecting the account

Query,

Username Password a—— [Calvm]A[******]A
spaceman s ok ok ok ok

hobbs * % %k ok k%

calvin % %k %k 5k % k

I Derki * ok Kok kK
erkins — [caIVin]B[******]B

Query,

Step 1: privately selecting the account

Query,

Username Password a—— [Calvm]A[******]A
spaceman s ok ok ok ok

hobbs * % %k ok k%

Secret Shares
calvin ok ok ko o

I Derki * ok Kok kK
erkins — [caIVin]B[******]B

Query,

Tool: Distributed Point Functions [NI’14]

One-hot vector:

1%

A B

nbz = EEEEENENEN

Account selection with the DPF

Username Password

spaceman rokokx

hobbs ook
(] [o0 |1 |~1]0 :| = [Ca|vin:| [****]
calvin ook

Derkins ool

Account selection with the DPF

Username Password

spaceman gxl

hobbs g'? 3
- 0|:oo1~~o:|= calvin g :|

calvin g 3

Derkins g

Schnorr Proof [S'98]

Fix values, G, ¢, gxwhere G is a group and g is a generator of G.
Goal: efficiently prove to a verifier that you know X .

Must satisfy zero-knowledge: the verifier learns nothing beyond that the prover knows .

I’ll show you | know T3
without you learning what '3 is!

There are some issues!

A Schnorr Proof is not quite enough:

« We do not want servers to know who is verifying

o Aserver that learns gx?’ also learns that Calvin is the one authenticating.

o Servers in our design hold shares of gx3; hiding the user

o Can we modify Schnorr’s proof to work over [g*3] instead of ¢g3?

New tool: Schnorr Proof over Secret Shares (SPoSS)

Our contribution: SPoSS

Fix values, (&, g, gxwhere (& is a prime order group and g is a generator of G.
Goal: efficiently prove to a verifier that you know X .

Must satisfy zero-knowledge: the verifier learns nothing beyond that the prover knows .

We design a Schnorr proof for a secret-shared element ¢* with multiple verifiers:

o No verifier learns anything about gx, but proof still passes if and only if the prover knows I .
o Each verifier has [gx] and must be convinced that the prover knows .

New tool: Schnorr Proof over Secret Shares (SPoSS)

We design a Schnorr proof for a secret-shared element ¢* with multiple verifiers:

o No verifier learns anything about gx, but proof still passes if and only if the prover knows .

o Each verifier has [g$] and must be convinced that the prover knows I .

L3

I'll show you | know T3
without you learning what '3 is
or what g3 is

L3

g
X3 0

g

I’ll show you | know T3 I’ll show you | know my “password”
without you learning what '3 is o~ without you learning what my
or what gx3 is “password” is or what my “username” is

The Cloak Protocol

@ Prove: use a DPF to obliviously select
the account and a make a SPoSS
proof-of-knowledge for the
corresponding password.

@ Audit: servers individually check the
SPoSS proof over the secret-shares of the
selected account to verify the password.

@ Verify: servers confirm with each
other whether or not the user is
authenticated.

CloakJS Client

Username
hackerman

@ Password

Username \ Password (hash)
lillydilly ‘ 0x2ae43f15191
zergll3 0xfe41b1c7011
nullname Oxe4dlae5ffcae
hackerman 0x57a2e015d9d
johnnyap | oxee319da3fe2

—— OK!

Username | Password (hash)
lillydilly 0x2ae43f15191
zergll3 0xfe41b1c7011
nullname Oxe4dlae5ffcde
hackerman 0x57a2e015d9d
johnnyap ’ Oxee319da3fe2

Evaluation (work in progress)

e Implementedin Gov1.14
o Massively parallelizable: Auth with 1 billion accounts takes 5 seconds with 600 cores

e Evaluated on one core:

“w Authentication Time

(O]

€ 6 —

= 217 = 100,000 users = 300 milliseconds
S 49

I 229= 1,000,000 users = 3 seconds

2

_GC) O E T 'lx \'/<' T ’/\) '/\' A | i) ¥ . LR P SR LA |

5 10 14 17 20

ERE. 2 2 2

users (total accounts)

Evaluated w/ 1 server @ 1-core a

Evaluation (work in progress)

Authentication Time (s)

Authentication Time (Regression w/ 1 Server @ 32-cores) Facebook

100 - . ﬂ 2021 breach of 509,458,528 accounts
III

o 7 vo® MySpace

60 - K * 2008 breach of 359,420,698 accounts
| d
40 Ral
Pl Adobe
207 e o h‘ 2013 breach of 152,445,165 accounts
0 @—=——==== &——-0--—*’_—1

224 3227\ RO 23 . DropBox

users (total accounts) 0,: 2021 breach of 68,648,009 accounts

https://haveibeenpwned.com/

e Astandard 32-core server can support ~1 sec for 10 million users
and ~100 sec authentication with 1 billion users
e Parallelization allows support for large-scale services a

https://haveibeenpwned.com/

Acknowledgements

We would like to thank...

e Our mentor Sacha Servan-Schreiber,
o the MIT PRIMES program,
e OUr parents.

Questions?

References

[BGI'15]: Boyle, Elette, Niv Gilboa, and Yuval Ishai. "Function secret sharing." Annual international conference on the theory and applications of

cryptographic techniques. Springer, Berlin, Heidelberg, 2015.

[S'98]: Schnorr, Claus-Peter. "Efficient identification and signatures for smart cards." Conference on the Theory and Application of Cryptology.

Springer, New York, NY, 1989.

[NI'14]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2014.

