
Versatile Anonymous Authentication

with Cloak
Simon Beyzerov and Eli Yablon
Mentor: Sacha Servan-Schreiber

Motivation

● Online authentication is ubiquitous
○ Typically makes no considerations for user privacy

● Metadata is powerful
○ Contextualizes surface-level data

○ Can be used to draw powerful inferences when cross-referenced with more concrete

information

● Metadata is often leaked in typical authentication mechanisms

2

Metadata [secret conversation]

3

Motivation

● Online authentication is ubiquitous
○ Typically makes no considerations for user privacy

● Metadata is powerful
○ Contextualizes surface-level data

○ Can be used to draw powerful inferences when cross-referenced with more concrete

information

● Metadata is often leaked in typical authentication mechanisms

4

Example

Username: calvin
Password: ball

User: calvin
Password: ball
Time: 14:05:19 UTC
IPv6: e280:5da9:7fe:a1c9:bb1:7c90:a626:5de1

⋮

Requested Content

Authorized user!

5

Anonymous Authentication

● Ability to anonymize this exchange
○ Prevent server from learning which user is authenticating

■ Only that someone is authenticating

○ Can other information about the user be hidden?

● Limit metadata leakage
○ Collected metadata can allow complex relationships to be drawn about users

● What about Multi-Factor Authentication?
○ Using another medium to verify your identity after the initial authentication step

○ Leaks data to third parties 6

Example

Username: calvin
Password: ball

User: calvin
Password: ball
Time: 14:05:19 UTC
IPv6: e280:5da9:7fe:a1c9:bb1:7c90:a626:5de1

⋮

Requested Content

Authorized user!

7

Example

Username: *******
Password: ************
Time: 14:05:19 UTC
IPv6: e280:5da9:7fe:a1c9:bb1:7c90:a626:5de1

⋮

Requested Content

Authorized user!

Example

?

8

Example

Username: *******
Password: ************
Time: 14:05:19 UTC
IPv6: e280:5da9:7fe:a1c9:bb1:7c90:a626:5de1

⋮

Requested Content

Authorized user!

Example

Masked with VPN or Tor

?

9

Existing Solutions

● Anonymous Credentials

● Multi-Party Computation

● Cryptographic Accumulators

10

Anonymous Credentials

● Anonymous Credentials
○ Requires storing and managing keys on the client

■ Credentials are like “tokens” that can be issued and spent, but must be stored

○ Do not have efficient revocation of credentials

○ Do not integrate well with current username-password systems

○ Unclear how to extend to more complex applications such as authenticated retrieval

11

Our Goal

Allow Calvin to authenticate to MIT without revealing who is logging in.

12

Design, Threat Model, Assumptions

● We consider a setting with two non-colluding authentication servers
○ For example: MIT & Duo:

■ MIT handles password authentication

■ Duo is normally responsible for Two-Factor Authentication

■ Independent parties, so non-collusion is a reasonable assumption

● In Cloak, both servers are responsible for password authentication and second-factor

authentication, but remain independent and non-colluding

13

Design, Threat Model, Assumptions

● Assume both servers, individually, are fully malicious
○ MIT and Duo try and identify Calvin when he is authenticating.

○ Remain non-colluding, so they don’t maliciously interact with each other

● Users are assumed to be malicious by default
○ Malicious users want to authenticate, regardless of whether they have an account

14

Overview: Design, Threat Model, Assumptions

15

Overview: Design, Threat Model, Assumptions

Authenticated?1

2

2

3?

16

Technical overview

1. Use secret-sharing to obliviously “select” the account (username + password)
○ Neither server learns which account was selected

○ Achieved using Distributed Point Functions which are evaluated by the servers

2. Prove knowledge of the password without revealing any information
○ Performed using a new technique for proving knowledge over secret-shares

17

Background: Secret Sharing

● Distribute shares of a secret value among multiple parties

● Secret can only be revealed by combining shares
○ Nothing is learned without all parties coming together

● Toy example:
○ Masking a secret in a finite field: (x - r) and (r) form secret shares of x

● Notation: we use [x] to denote a secret-share of x

18

Step 1: privately selecting the account

Query
A

Query
B

B

A Username Password

spaceman ******

hobbs ******

calvin ******

⋮ ⋮

Derkins ******

[******]
A

[calvin]
A

[******]
B

[calvin]
B

?

19

Step 1: privately selecting the account

Query
A

Query
B

B

A

Secret Shares

Username Password

spaceman ******

hobbs ******

calvin ******

⋮ ⋮

Derkins ******

[******]
A

[calvin]
A

[******]
B

[calvin]
B

?

20

Tool: Distributed Point Functions [NI’14]

0 0 1 … 0

One-hot vector:

1 0 0 ⋯ 1 1 0 1 ⋯ 1
A B

A B
0 0 1 … 0

21

Account selection with the DPF

Username Password

spaceman ****

hobbs ****

calvin ****

⋮ ⋮

Derkins ****

0 0 1 ⋯ 0 = ****calvin

22

Account selection with the DPF

Username Password

spaceman

hobbs

calvin

⋮ ⋮

Derkins

0 0 1 ⋯ 0 = calvin

23

I k
now

Schnorr Proof [S’98]

Fix values, , , where is a group and is a generator of .
Goal: efficiently prove to a verifier that you know .

Must satisfy zero-knowledge: the verifier learns nothing beyond that the prover knows .

I’ll show you I know
without you learning what is!

24

There are some issues!

A Schnorr Proof is not quite enough:

● We do not want servers to know who is verifying
○ A server that learns also learns that Calvin is the one authenticating.

● Servers in our design hold shares of ; hiding the user
○ Can we modify Schnorr’s proof to work over [] instead of ?

25

New tool: Schnorr Proof over Secret Shares (SPoSS)

Our contribution: SPoSS

Fix values, , , where is a prime order group and is a generator of .
Goal: efficiently prove to a verifier that you know .

Must satisfy zero-knowledge: the verifier learns nothing beyond that the prover knows .

We design a Schnorr proof for a secret-shared element with multiple verifiers:
○ No verifier learns anything about , but proof still passes if and only if the prover knows .
○ Each verifier has [] and must be convinced that the prover knows .

26

We design a Schnorr proof for a secret-shared element with multiple verifiers:
○ No verifier learns anything about , but proof still passes if and only if the prover knows .
○ Each verifier has [] and must be convinced that the prover knows .

New tool: Schnorr Proof over Secret Shares (SPoSS)

B

?
AI’ll show you I know

without you learning what is
or what is

I k
now

27

I’ll show you I know
without you learning what is
or what is ≈ I’ll show you I know my “password”

without you learning what my
“password” is or what my “username” is

28

1 Prove: use a DPF to obliviously select

the account and a make a SPoSS

proof-of-knowledge for the

corresponding password.

The Cloak Protocol

2 Audit: servers individually check the

SPoSS proof over the secret-shares of the

selected account to verify the password.

3 Verify: servers confirm with each

other whether or not the user is

authenticated. 29

● Implemented in Go v1.14

● Massively parallelizable: Auth with 1 billion accounts takes 5 seconds with 600 cores

● Evaluated on one core:

Evaluation (work in progress)

217 ≈ 100,000 users ⇒ 300 milliseconds

220 ≈ 1,000,000 users ⇒ 3 seconds

30
Evaluated w/ 1 server @ 1-core

Evaluation (work in progress)

31

Facebook
2021 breach of 509,458,528 accounts

MySpace
2008 breach of 359,420,698 accounts

Adobe
2013 breach of 152,445,165 accounts

DropBox
2021 breach of 68,648,009 accounts

● A standard 32-core server can support ~1 sec for 10 million users
and ~100 sec authentication with 1 billion users

● Parallelization allows support for large-scale services

https://haveibeenpwned.com/

https://haveibeenpwned.com/

Acknowledgements

We would like to thank...

● Our mentor Sacha Servan-Schreiber,

● the MIT PRIMES program,

● our parents.

Questions?

32

References

[BGI’15]: Boyle, Elette, Niv Gilboa, and Yuval Ishai. "Function secret sharing." Annual international conference on the theory and applications of

cryptographic techniques. Springer, Berlin, Heidelberg, 2015.

[S’98]: Schnorr, Claus-Peter. "Efficient identification and signatures for smart cards." Conference on the Theory and Application of Cryptology.

Springer, New York, NY, 1989.

[NI’14]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2014.

33

