
Consensus under a Dynamic
Synchronous Model

Author: Kunal Kapoor
Mentor: Jun Wan

Byzantine Broadcast
● Background: Byzantine Generals need to attack or retreat

● Generals are split apart and communicate via messengers

● Some messengers are traitors/secret enemies

● How do they proceed?

General Problem Definition

● n users in a system

○ Honest Users

○ Corrupt Users

● GOAL: Achieve Consensus

○ Consistency

○ Validity

Real World Applications

● Area: Distributed Computing

● Blockchain

● Other Distributed Systems

Past Work
● Known n and h

○ n represents Total Population

○ h represents Online Honest Population

○ f represents Online Corrupt Population

● Honest Majority

○ h > n/2

● No Sleepy Users

○ Sleepy users can go offline

● Blockchain Approach vs Trust Graph

Honest

Sleepy

Corrupt

Dynamic Synchronous Model

● n, h - unknown

● A constant c is known s.t. c < h/n

● Sleepy users

● Solution

○ 2 Building Blocks

○ Byzantine Broadcast Proper

● Main Result: Adapting the Post Processing algorithm

Building Block 1: Trust Graph

● Graph mapping relations between users

○ Edge signifies mutual trust

● Each user has unique trust graphs

● Honest users remain connected

● Edge Removal

○ Distrust Messages

○ Equivocation Evidence

Trust Graph: Post Processing Algorithm
● Post Processing Goal: Set an upper bound on the diameter

● Why? Large diameter (d) trades off with efficiency

● Previous work has shown an upper bound of 2n/h is satisfactory

● Two important adaptations

○ Sleepy User adaptation

○ Unknown h adaptation

Trust Graph: Post Processing Algorithm
● Layer k (S_k): Set of all nodes a distance of k away from the “origin”

Layer 1

Trust Graph: Post Processing Algorithm
● Algorithm: Find the minimum value of |S_k| + |S_k+1| and remove all

edges in between these two layers.

 Slice

Trust Graph: Post Processing Algorithm

● Two claims to prove

○ Diameter bounded within n/h

○ Never removes edges between honest nodes

● Claim 1 - Diameter bounded

○ Algorithm discards fraction of layers

○ 2/c >= 2n/h

Trust Graph: Post Processing Algorithm
● Claim 2: Honest nodes remain connected

● Scenario: Corrupt node attempts to remove edges between honest nodes

Slice

At least h nodes

● Diameter > 2n/h AND 2/c when algorithm applied

● Average sum of two layers → n/(2n/h)*2 = h is greater than the average

minimum layer sum

Building Block 2: Trust Cast
● TrustCast - protocol used to send messages throughout the trust

graph

○ New sender S every epoch

○ Epoch = d rounds

○ Verification Function

● Two required results

○ Take action on S

○ No edges removed between honest users

Knowledge Gaps
● Don’t know n

● Utility of TrustCast

○ Use c to estimate d

● Case 1: Some node k sends to all

● Case 2: Some node k sends to none

● Case 3: Some node k selectively sends

Consensus Protocol Proper
● Use Trust Graph and Trust Cast → Consensus
● Three phases

○ Happen multiple times until Termination

● Propose Phase
○ Leader selected
○ TrustCasts message

● Vote Phase
○ Vote on a bit
○ heavily impacted

● Commit Phase
○ Commit on a bit

Vote Phase
● Previous verification function: receive f + 1 votes

● Impossible to receive f + 1 votes

○ Don’t know h

● (1-c)*n + 1 could work but sleepy nodes

● Use the “potentially sleepy” feature of the TrustCast protocol

○ Use (1-c)*k + 1 where k is total online nodes

● Creates a valid condition

Conclusion
● Successfully adapt to the Dynamic Synchronous Model

● Creating post processing algorithm

● Modified TrustCast and Vote Phase

● Other models to examine

○ Users join in the middle of the protocol

○ Weaker guarantee on starting condition

Acknowledgements
I would like to acknowledge

- Jun Wan, my mentor, who met with me weekly and answered questions

about my research as well as suggested the project

- MIT PRIMES program for giving me the opportunity to research

- Prof. Srini Devadas and all other members of the CS division who

organized the conference and the general research of the students

