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Abstract. Mathematical objects called braids are formed from “strands”

(like string or yarn) that intertwine. A certain collection of braids, called

simple braids, correspond to permutations, depending on how the strands get
permuted. We can think of braids as maps from a disc with some “punctures”

to itself; using this idea, we can consider the topological entropy of a braid,

which can be zero or positive. What proportion of simple braids have positive
topological entropy? The main theorem of this project is that, in the limit

as the number of strands increases, the proportion of simple braids that have

positive topological entropy approaches 1. This can be proved by showing that
we can almost always find a long cycle in the permutation that will enable us

to get a braid with three strands that has positive topological entropy, yielding
the theorem. Topological entropy of braids can have use beyond just being

interesting mathematics, such as for considering how to stir fluids.

1. Introduction

Braids are important objects in mathematics, especially topology. What are
braids? Informally, a braid is composed of some strands (like pieces of string
or yarn) that intertwine with one another, where we only care about how they
intertwine, not about exactly where they are positioned. (We will think of these
strands as oriented vertically.)

For a positive integer n, the braids on n strands form a group, where the product
β1β2 of two braids β1 and β2 is formed by putting β1 above β2 and then joining the
ends of the strands at the bottom of β1 with the ends of the strands at the top of
β2. We will call this group Bn. Another way to think about the group Bn is as the
group generated by n−1 elements σ1, . . . , σn−1 subject to the relations σiσj = σjσi
for |i − j| ≥ 2 and σiσi+1σi = σi+1σiσi+1 for i with 1 ≤ i ≤ n − 2. Here σi is a
braid in which a strand going directly from position i + 1 on top to position i on
the bottom passes in front of a strand going directly from position i on the top to
position i + 1 on the bottom, while a strand goes directly from position j on the
top to position j on the bottom for j 6= i, i+ 1.

There is a natural map fromBn to Sn (the group of permutations of {1, . . . , n}) in
which σi maps to the transposition swapping i and i+1. There is a certain collection
of n! braids, the simple braids, that are natural preimages for the n! elements of Sn.
The simple braids are useful for solving group-theoretic computational problems in
Bn, as discussed by Elrifai and Morton [3]. One important simple braid is the half
twist, which corresponds to the permutation i 7→ n+ 1− i. The square of the half
twist, the full twist, generates the center of Bn for n ≥ 3.

Another way to look at elements of Bn is as maps from a disk with n punctures to
itself. (This is in a topological sense, so it is imprecise to say “maps”; “equivalence
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classes of maps” is more accurate.) For example, the full twist yields the identity
map on the punctured disk. This perspective lets us look at how a braid acts on
“loops” that we could draw around some of the strands. Then we can look at how
iterating the map acts on loops; by doing so, we can define the topological entropy
of a braid; this will be a nonnegative real number. Topological entropy is related
to real-world considerations involving mixing fluids.

This perspective of braids as maps of a punctured disk also relates to the Nielsen-
Thurston classification. In the Nielsen-Thurston classification, braids are classified
as periodic, reducible and not periodic, or pseudo-Anosov. A braid is periodic when
the map of the punctured disk can be raised to some positive integer power to give
the identity map; equivalently, a braid is periodic when some positive integer power
of the braid equals some integer power of the full twist. (For example, the half twist
is periodic.) A braid is reducible when there exists some family of nontrivial (i.e.
enclosing at least two punctures, but not all of them), pairwise nonintersecting
loops that is fixed under the action of the braid. (The action of the braid is allowed
to permute the loops.) In such a case, we can think of the loops as “tubes,” and
then we have “reduced” the braid into the braid formed by the outside strands and
the tubes, where we treat the tubes as strands, and the braids inside the tubes,
so the name “reducible” makes sense. A pseudo-Anosov braid is a braid that is
not periodic or reducible. (This is not the way that “pseudo-Anosov” is usually
defined, but the usual definition is technical and unnecessary for our purposes.)

The Nielsen-Thurston classification is related to topological entropy. Specifically,
periodic braids have topological entropy zero, and reducible braids that can, in a
certain sense, be reduced into components that are all periodic, have topological
entropy zero. On the other hand, pseudo-Anosov braids have positive topological
entropy, as do the reducible braids that are not of the form in the previous sentence.

Our main theorem investigates when simple braids have positive topological
entropy.

Theorem 1. The proportion of simple braids in Bn that have positive topological
entropy is 1− o(1).

Similar results have been proved in the past, but those results were concerned
with the braid group on a fixed number of strands, and they considered braids
which were the product of many factors, instead of considering the simple braids
on a varying number of strands.

We also determine expressions for the images of the simple braids under a ho-
momorphism, the reduced Burau representation, from Bn to GLn−1(Z[t, t−1]). The
Burau representation is related to the topological entropy of braids by a result of
Fried and Kolev [5, 6].

Theorem 2. For n ≥ 2, suppose that β ∈ Bn is a simple braid corresponding to the
permutation π. Then we can explicitly determine the entries of the image of β under
the Burau representation. Namely, consider arbitrary i and j with 1 ≤ i, j ≤ n− 1.
Let u be the number of k ∈ {1, . . . , n} such that k > j and π−1(k) ≤ i. (We let π−1

be the inverse of π.) Let ai,j be the (i, j) entry (i.e., in the ith row and jth column)
of the image of β under the Burau representation. Then:

• if π−1(j) ≤ i < π−1(j + 1), then ai,j = tu;
• if π−1(j + 1) ≤ i < π−1(j), then ai,j = −tu;
• otherwise, ai,j = 0.
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Section 2 gives technical background information. Section 3 contains the proof of
Theorem 1, proceeding, as follows. Subsection 3.1 shows how, if we delete a strand
from a braid of topological entropy zero, the resulting braid still has topological
entropy zero; this lets us focus on one “cycle” of a braid. Subsection 3.2 contains a
useful combinatorial result; roughly, as n grows large, almost all permutations in Sn
have many long cycles with length divisible by 3. Subsection 3.3 lets us get a useful
three-strand braid from a simple braid corresponding to a 3m-cycle. Subsection 3.4
shows that at least a fixed positive proportion of a certain family of three-strand
braids have positive topological entropy. Finally, Subsection 3.5 combines these
results to prove Theorem 1. Section 4 contains the proof of Theorem 2. Section 5
presents further directions for potential future work.

2. Background

The braid group is a standard mathematical object.

Definition 1. For a positive integer n, the braid group on n strands is the group
generated by n − 1 elements σ1, . . . , σn−1 subject to the relations σiσj = σjσi for
|i− j| ≥ 2 and σiσi+1σi = σi+1σiσi+1 for i with 1 ≤ i ≤ n− 2.

Let ι be the identity element of Bn.

Definition 2. A braid is positive if it is the product of zero or more elements of
the form σi.

The braid group Bn is isomorphic to a certain mapping class group of a disk.
To make this group, we fix a set of n points P1, . . . , Pn inside the disk. Then we
consider orientation-preserving homeomorphisms from the disk to itself that fix the
boundary pointwise and permute the set of Pi’s. An element of the mapping class
group that we wish to consider is an equivalence class of such maps, where two
maps are equivalent if there is some map yielding an isotopy between them such
the map fixes the boundary pointwise and fixes each Pi. To get the isomorphism,
σi corresponds to switching Pi and Pi+1 by moving them in a clockwise direction
relative to one another as seen from above. This relates to seeing braids as having
strands: we can make the points be in a row in order from P1 on the left to Pn
on the right and let the point that starts as Pi move as the strand that starts
at position i moves as it goes from top to bottom. For a reference, see Farb and
Margalit [4].

It will be useful to define Γn to be the map that sends any homeomorphism f
of the disk that fixes the boundary pointwise and permutes the set of Pi’s to the
braid corresponding to the isotopy class of f in the mapping class group.

Let Sn be the group of permutations of {1, . . . , n} where multiplication is func-
tion composition (this is the symmetric group). We will compose functions left to
right (so our convention for multiplication in Sn is the opposite of some sources’
convention).

Definition 3. Let µn : Bn → Sn be the group homomorphism such that, for
i = 1, . . . , n− 1, we have that µn(σi) is the transposition τi swapping i and i+ 1.

Note that this homomorphism is well-defined, as τiτj = τjτi for |i − j| ≥ 2 and
τiτi+1τi = τi+1τiτi+1 for i with 1 ≤ i ≤ n − 2.We will usually abuse notation and
refer to µn simply as µ. Note that in a braid β, the strand that starts at position
i on the top ends at position (µ(β))(i) on the bottom.



4 LUKE ROBITAILLE

There is more than one way to define simple braids. We follow the approach of
Elrifai and Morton [3].

Definition 4. A simple braid is a positive braid that can be drawn so any two
strands cross at most once.

(In [3] these are called “positive permutation braids.”) Then Lemma 2.3 of [3]
and its proof give the following.

Proposition 3. For every permutation p ∈ Sn, there exists a unique simple braid
β with µ(β) = p. Moreover, any simple braid can be drawn so that whenever two
strands cross, the strand that goes from being right on top to being left on bottom
is in front of the other strand. (In [3] such a crossing is called a positive crossing.)

Note that Proposition 3 gives a natural bijection between simple braids and
elements of Sn.

As any braid in which all crossings are positive crossings is a positive braid by
definition (a fact which [3] uses in proving their Lemma 2.3), we have the following
result.

Proposition 4. If we ignore some of the strands of a simple braid such that at
least one strand remains and the remaining strands form a valid braid (i.e. the set
of starting positions is the same as the set of ending positions), then this braid is a
simple braid.

Proof. Drawing the original braid as described in Proposition 3, the desired is
immediate by definition. �

We also have the following result, which follows from Elrifai and Morton [3].

Proposition 5. If we consider the n! braids (σi1 · · · · · σ2 · σ1) · (σi2 · · · · · σ2) · · · · ·
(σin−1 · · · · ·σn−1) where j−1 ≤ ij ≤ n−1 for all j, then these braids are all simple
braids, and they give every simple braid in Bn exactly once.

Let the half twist be the simple braid corresponding to the permutation i 7→
n+ 1− i, and let the full twist Φ be its square.

Definition 5. A braid β is periodic if βk = Φm for some positive integer k and
some integer m.

Adler, Konheim, and McAndrew [1] introduced the concept of topological en-
tropy. This is a nonnegative real number assigned to a map from a compact topo-
logical space to itself. (The actual definition of topological entropy is technical and
not needed for our purposes; we will only care about when it is zero or not.) Then
we can consider the topological entropy of a braid as being the infimum of the
topological entropies of the maps in the isotopy class in the mapping class group
that corresponds to the braid.

We use certain standard properties of topological entropy.

Proposition 6. (a) (from [1]) For a map β from a compact topological space to
itself and a positive integer m, entropy(βm) = m · entropy(β). (It follows directly
that entropy(βk) ≤ k · entropy(β) for a braid β.)

(b) The entropy of the identity braid is zero.
(c) (from [1]) If two maps are conjugate, then they have the same entropy.
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Proof of part (b). Part (b) follows readily from part (a): by taking β to be the
identity map in part (a), we get that the identity map has entropy zero; then the
identity braid’s entropy is at most that of the identity map, and is nonnegative,
and thus is zero. �

We have a homomorphism from the braid group to GLn−1(Z[t, t−1]). This is
the reduced Burau representation. Specifically, it sends σi to the matrix whose
(j, k) entry is t if (j, k) = (i, i − 1), −t if (j, k) = (i, i), 1 if (j, k) = (i, i + 1), and
δjk otherwise. For example, for the reduced Burau representation of B5, we have

σ3 7→


1 0 0 0
0 1 0 0
0 t −t 1
0 0 0 1

. Call this map ρn. We will usually abuse notation and just

call it ρ.
We have the following result, due to Fried and Kolev [5, 6].

Proposition 7. Let β ∈ Bn be a braid. For any complex number z with |z| = 1, we
can consider the maximum magnitude of the eigenvalues of ρn(β) if we set t = z.
Let λ be the supremum of this value over all such z. Then the natural logarithm of
the entropy of β is greater than or equal to λ.

Their result was actually for the so-called unreduced Burau representation, which
is slightly different, but the unreduced Burau representation is isomorphic to a di-
rect sum of the reduced Burau representation and a trivial one-dimensional repre-
sentation (see Section 1.3 of Turaev [10]), so their result is equivalent to the result
we want.

3. Proof of Theorem 1

3.1. Deleting strands from braids. Let β be a braid. Consider the cycle de-
composition of the permutation µ(β). Suppose we have a cycle a1 7→ a2 7→ · · · 7→
ak 7→ a1. Then the set of strands starting at one of a1, . . . , ak is the same as the
set of strands ending at one of a1, . . . , ak, so we can consider just those strands to
form a braid. (It is not hard to see that doing so is well-defined.) Call this braid
β′.

Proposition 8. If we take β and β′ as in the previous paragraph, if β has topological
entropy zero, then β′ has topological entropy zero.

Proof. We can consider D2 − {pa1 , . . . , pak} to be Dk. Then, for any orientation-
preserving homeomorphism f of D2 that fixes ∂Dn pointwise with Γn(f) = β, we
will have that f fixes ∂Dk pointwise and Γk(f) = β′, so the entropy of β′ is less
than or equal to the entropy of f . As β has entropy zero, we can choose f with
arbitrarily small nonnegative entropy; thus β′ has entropy zero, as desired. �

3.2. Some combinatorial results about cycles of permutations. (In this
section we are manipulating formal power series; we do not care about convergence
or lack thereof.)

We make use of the following result, which is equation 5.30 from Enumerative
Combinatorics, Volume 2 by Richard P. Stanley [9].

Proposition 9. Let ti be an indeterminate for all positive integers i. For every
permutation π in Sn, if π has c1 cycles of length 1, c2 cycles of length 2, . . . , cn
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cycles of length n, then let Z(π) = tc11 t
c2
2 . . . tcnn . Let Z̃(Sn) =

∑
π∈Sn

Z(π). Let x
be an indeterminate. Then∑

n≥0

Z̃(Sn)
xn

n!
= exp

∑
i≥1

ti
xi

i

 .

We will also need some simple inequalities.

Lemma 10. Let x ∈ [0, 1] be a real number. For any nonnegative integer i, we have
that

(−x
i

)
(−1)i ≥ 0. Also, for all nonnegative integers i, we have that

(−x
i

)
(−1)i ≤

2
(−x
2i

)
(−1)2i.

Proof. The first sentence is clear, as
(−x
i

)
(−1)i = x(x+1)...(x+i−1)

i! ≥ 0. As for the
second sentence, it’s clear for i = 0 or x = 0; for i > 0 and x > 0, we need

1 ≤ 2(x+i)(x+i+1)...(x+2i−1)
(i+1)...(2i) , which holds, as the right hand side equals x+i+1

i+1 ·
. . . x+2i−1

2i−1 ·
2(x+i)

2i , and every fraction in that product is greater than 1. �

Lemma 11. If p0, p1, p2, . . . are nonnegative real numbers and q0, q1, . . . , r0, r1, . . .
are real numbers with qi ≤ ri for all i, then each coefficient of
(
∑∞
j=0 pjx

j)(
∑∞
j=0 qjx

j) is less than or equal to the corresponding coefficient of

(
∑∞
j=0 pjx

j)(
∑∞
j=0 rjx

j).

Proof. This is clear, as
∑k
j=0 pjqk−j ≤

∑k
j=0 pjrk−j for all k, as pjqk−j ≤ pjrk−j

for all j and k with 0 ≤ j ≤ k. �

The following result is standard; see [7], for example.

Lemma 12. For a fixed real number a that is not a nonnegative integer,(
a

n

)
= Θ

(
(−1)n

Γ(−a)n1+a

)
.

We can now show the following result.

Lemma 13. Let k be a positive integer. Then the proportion of permutations of
{1, . . . , n} that have no cycle with length of the form k(2m + 1) for nonnegative
integer m (i.e., no cycles of length k, 3k, 5k, . . . ) is O(n−1/(2k)).

Proof. Let an be the number of such permutations of {1, . . . , n}, and let cn = an
n! .

Setting tk(2m+1) = 0 for all nonnegative integers m and ti = 1 for all other i in
Proposition 9, we get

∑
n≥0

an
n!
xn = exp

 ∑
i≥1,i6≡k (mod 2k)

xi

i

 .

The right-hand side is equal to

exp

∑
i≥1

xi

i
−
∑
i≥1

xki

ki
+
∑
i≥1

x2ki

2ki

 ,

which equals (1− x)−1(1− xk)1/k(1− x2k)−1/(2k). Thus we have that∑
n≥0

an
n!
xn = (1− x)−1(1− xk)1/k(1− x2k)−1/(2k).
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Now

(1− x)−1(1− xk)1/k = (1 + x+ · · ·+ xk−1)(1− xk)(1/k)−1

= (1 + x+ · · ·+ xk−1)
∑
i≥0

(
(1/k)− 1

i

)
(−1)ixik;

now both of the factors in that last product have nonnegative coefficients by
Lemma 10, so (1−x)−1(1−xk)1/k has nonnegative coefficients. Now (1−x2k)−1/(2k)

=
∑
i≥0
(−1/(2k)

i

)
(−1)ix2ik. Note that the coefficients of this sum are, term by term,

less than or equal to the coefficients of 2
∑
i≥0
(−1/(2k)

2i

)
(−1)2ix2ik +

2
∑
i≥0
(−1/(2k)

2i+1

)
(−1)2i+1x(2i+1)k, as, by Lemma 10, we have

(−1/(2k)
i

)
(−1)i ≤

2
(−1/(2k)

2i

)
(−1)2i and 0 ≤ 2

(−1/(2k)
2i+1

)
(−1)2i+1 for all nonnegative integers i. Thus,

by Lemma 11, we have that each coefficient of (1− x)−1(1− xk)1/k(1− x2k)−1/(2k)

is less than or equal to the corresponding coefficient of

(1−x)−1(1−xk)1/k(2
∑
i≥0
(−1/(2k)

2i

)
(−1)2ix2ik+2

∑
i≥0
(−1/(2k)

2i+1

)
(−1)2i+1x(2i+1)k).

Now this last product is equal to

(1− x)−1(1− xk)1/k · 2(1− xk)−1/(2k)

= 2(1− x)−1(1− xk)1/(2k)

= 2(1 + x+ · · ·+ xk−1)(1− xk)1/(2k)−1

= 2(1 + x+ · · ·+ xk−1)
∑
i≥0

(
1/(2k)− 1

i

)
(−1)ixik

=
∑
i≥0

2

(
1/(2k)− 1

bi/kc

)
(−1)bi/kcxi.

Thus, for all nonnegative integers n, we have that

an
n!
≤ 2

( 1
2k − 1

bnk c

)
(−1)b

n
k c.

Then the desired result follows from Lemma 12, as it is a standard result that the
gamma function is well-defined at inputs that are not nonpositive integers and is
never zero, and one can check that combining Lemma 10 and Lemma 12 yields
Γ(1− 1/(2k)) > 0 (which alternatively can be immediately deduced from standard
properties of the gamma function). �

Using this lemma, the following is immediate.

Proposition 14. For any positive integer r, the proportion of permutations of
{1, . . . , n} that have at least r cycles whose lengths are at least 63 and are divisible
by 3 is 1− o(1).

Proof. By Lemma 13, for each i = 0, . . . , r − 1, the proportion of permutations of
{1, . . . , n} that do not have a cycle whose length is of the form 63 · 2i · (2m + 1)
for some nonnegative integer m is o(1). Thus the proportion of permutations of
{1, . . . , n} that have cycles of all those forms is 1− o(1), and any such permutation
works (because no two of the cycles can be the same). �
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3.3. Reducing to consideration of three-strand braids. Let m be a positive
integer. Let Pm be the set of m-tuples (β1, . . . βm) of simple braids on three strands
such that the product β1 . . . βm maps to a non-identity three-cycle under µ.

Lemma 15. The number of elements of Pm is 2 · 6m−1.

Proof. For each of the 6m−1 possible choices of β1 through βm−1, there are two
choices for βm. �

Let Cm be the set of all permutations of {1, . . . , 3m} that are 3m-cycles. It is
well-known (and easy to see) that Cm has (3m− 1)! elements. For any π ∈ Cm, we
can consider some ordering a1, . . . , a3m of 1, . . . , 3m defined by setting a1 = 1 and
π(ai) = ai+1 for i = 1, . . . , 3m− 1. For convenience, let a3m+1 = π(a3m) = a1. Let
β ∈ B3m be the simple braid corresponding to π.

Define an m-tuple (β1, . . . , βm) of simple braids on three strands as follows. For
each i with 1 ≤ i ≤ m, consider the permutation of {1, 2, 3} where we

• map {1, 2, 3} to {ai, am+i, a2m+i} where 1 maps to the smallest element of
the latter set, 2 to the second-smallest, and 3 to the largest; then
• map {ai, am+i, a2m+i} to {ai+1, am+i+1, a2m+i+1} where ak 7→ ak+1 for
k = i,m+ i, 2m+ i; then
• map {ai+1, am+i+1, a2m+i+1} to {1, 2, 3} where the smallest element of the

former set maps to 1, the second-smallest to 2, and the largest to 3.

Let βi be the simple braid on three strands corresponding to that permutation.

Lemma 16. We have that (β1, . . . , βm) is an element of Pm.

Proof. We have that the βi are all simple braids on three strands. To see that
µ(β1 · · · · · βm) is a three-cycle, note that µ(β1 · · · · · βm) is the following permu-
tation (recalling that µ is a homomorphism, that a3m+1 = a1, and that function
composition goes right-to-left):

• map {1, 2, 3} to {a1, am+1, a2m+1} where 1 maps to the smallest element of
the latter set, 2 to the second-smallest, and 3 to the largest; then

• map {a1, am+1, a2m+1} to itself, where a1 7→ am+1 7→ a2m+1 7→ a1; then
• map {a1, am+1, a2m+1} to {1, 2, 3} where the smallest element of the former

set maps to 1, the second-smallest to 2, and the largest to 3.

Thus, as a1 = 1 < am+1, a2m+1, we can see that µ(β1·· · ··βm) is 1 7→ 2 7→ 3 7→ 1 if
am+1 < a2m+1 and 1 7→ 3 7→ 2 7→ 1 otherwise; in any case, we have the desired. �

Thus we have a map from Cm to Pm. Call this map ψ.

Lemma 17. For any (β1, . . . , βm) ∈ Pm, the number of π ∈ Cm such that ψ(π) =

(β1, . . . , βm) is (3m−1)!
2·6m−1 .

Proof. Let the cycle π be 1 = a1 7→ a2 7→ · · · 7→ a3m 7→ a1. Consider the ordered m-
tuple of sets ({am+1, a2m+1}, {a2, am+2, a2m+2}, . . . , {am, a2m, a3m}). (Note that
the first coordinate has two elements, while every other coordinate has three.)

Note that each m-tuple corresponds to 2 ·6m−1 possible cycles, so there are (3m−1)!
2·6m−1

possible m-tuples. Let us show that, for each of these possible m-tuples, there is
exactly one choice for π that will correspond to it and will have ψ(π) = (β1, . . . , βm).

It follows from the proof of Lemma 16 that we can determine whether am+1 is
less than or greater than a2m+1 depending on what µ(β1 · · · · · βm) is. Thus we can
determine what the ordered triple (a1, am+1, a2m+1) is. Then we can inductively use
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βi to uniquely determine {ai+1, am+i+1, a2m+i+1} from {ai, am+i, a2m+i} for i =
1, . . . , n−1. Hence, all the ai are uniquely determined, so π is uniquely determined.
To see that the resulting π does indeed satisfy the equation ψ(π) = (β1, . . . , βm),
we proceed as follows. Let ψ(π) = (β′1, . . . , β

′
m). Then β′i = βi for i = 1, . . . ,m− 1

by definition. Also, we know µ(β′1 · . . . β′m) = µ(β1 · . . . βm) (using the proof of
Lemma 16); then, as β′i = βi for i = 1, . . . ,m − 1, we get µ(β′m) = µ(βm), so
β′m = βm (as β′m and βm are simple braids). Therefore, β′i = βi for i = 1, . . . ,m,
so we indeed have ψ(π) = (β1, . . . , βm). Now the claim is shown; the Lemma
immediately follows. �

Why do we care about this seemingly arbitrary map ψ? The following propo-
sition shows how ψ can be useful: it lets us consider the topological entropy of
three-strand braids instead of the topological entropy of braids on many strands.
For any element (β1, . . . , βm) of Pm, let ξ((β1, . . . , βm)) = β1 · · · · · βm.

Proposition 18. Let π be an element of Cm, and let β be the simple braid on 3m
strands corresponding to π. Let ψ(π) = (β1, . . . , βm), and let γ = ξ(ψ(π)). If γ has
positive topological entropy, then β has positive topological entropy.

Proof. Suppose for contradiction that β has topological entropy zero. Let π be the
permutation a1 7→ · · · 7→ a3m 7→ a1 with a1 = 1, as earlier. Consider the braid
βm; this has topological entropy zero by Proposition 6. Now µ(βm) contains the
three-cycle a1 7→ am+1 7→ a2m+1 7→ a1. Deleting all strands of βm but those three,
we get a braid that we will call ζ. By Proposition 8, ζ has topological entropy
zero. If we draw strands from positions {1, 2, 3} to {a1, am+1, a2m+1} increasing
order at the top, and vice versa at the bottom, then we have a three-strand braid
ζ ′ which has topological entropy zero since ζ does, by part (c) of Proposition 6.
But now, using facts from earlier about simple braids, one can see that ζ ′ = γ; this
is a contradiction, so we are done.

�

3.4. A useful result about three-strand braids. By taking t = −1 in the
Burau representation of B3, we get a homomorphism, which we will call f , from B3

to SL2(Z), under which σ1 7→
[
1 1
0 1

]
and σ2 7→

[
1 0
−1 1

]
. Note that det(f(σ1)) =

det(f(σ2)) = 1, so we have det(M) = 1 for all M ∈ B3.
We have the following result.

Lemma 19. For any β ∈ B3, if |tr(f(β))| > 2, then β has positive topological
entropy.

Proof. Let M = f(β), and let t = tr(M). We have det(M) = 1. Then the
characteristic polynomial det(xI −M) of M is x2 − tx + 1. Then the eigenvalues

of M are t±
√
t2−4
2 . (Note that these eigenvalues are not equal to each other, as

t 6= ±2.) Now if t > 2, then t+
√
t2−4
2 > 1; if t < −2, then t−

√
t2−4
2 < −1. Either

way, M has an eigenvalue of magnitude greater than 1. Then Proposition 7 yields
the desired. �

We can use this to prove the following result. (Note that the constant 21 in this
result can likely be improved, but doing so is not necessary for our purposes.)

Proposition 20. For any positive integer m ≥ 21, the number of elements (β1, . . . , βm)
to Pm that map to a braid of positive topological entropy under ξ is at least 2·6m−21.
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Proof. We shall show that, for any choice of β1, . . . , βm−21, there exist at least two
possible choices of βm−20, . . . , βm such that β1 · · · · · βm has positive topological
entropy.

Let us choose βm−20 so that µ(β1 · · · · · βm−20) is a three-cycle; clearly, this can
be done in two ways (for each of the two three-cycles, there is a unique choice for
what µ(βm−20) should be, and thus a unique choice for what βm−20 should be).
For each of those choices we will find suitable βm−19, . . . , βm.

Let β = β1 · · · · · βm−20. Consider the following choices for (βm−19, . . . , βm):

• (ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι),
• (σ1, σ1, σ1, σ1, σ2, σ2, σ2, σ2, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι),
• (σ2, σ2, σ2, σ2, σ1, σ1, σ1, σ1, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι, ι), or
• (σ1, σ1, σ1, σ1, σ1, σ1, σ2, σ2, σ2, σ2, σ2, σ2, σ2, σ2, σ1, σ1, σ1, σ1, σ2, σ2).

Note that, for each of these 20-tuples, we have µ(βm−19 · · · · · βm) is the identity
permutation, as µ(σ2

1) = µ(σ2
2) = µ(ι) is the identity permutation. Thus, for each

of these 20-tuples, we have that (β1, . . . , βm) ∈ Pm (as µ(β1 · · · · · βm−20) is a
three-cycle, and µ is a homomorphism).

One can compute (with the help of Magma [8]) that the values of f(βm−19 · · · · ·

βm) for the above 20-tuples are, respectively,

[
1 0
0 1

]
,

[
−15 4
−4 1

]
,

[
1 4
−4 −15

]
, and[

317 −182
54 −31

]
.

Let us show that at least one of those will yield a braid β1 · · · · · βm of positive
topological entropy. Suppose for the sake of contradiction that none of them do. Let

f(β) =

[
w x
y z

]
. The four choices above for (βm−19, . . . , βm) yield values for f(β1 ·

· · · · βm), of, respectively,

[
w x
y z

]
,

[
−15w − 4x 4w + x
−15y − 4z 4y + z

]
,

[
w − 4x 4w − 15x
y − 4z 4y − 15z

]
,

and

[
317w + 54x −182w − 31x
317y + 54z −182y − 31z

]
. Since none of the options for β1 · · · · · βm have

positive topological entropy, we can see by Lemma 19 that we must have

• |w + z| ≤ 2,
• | − 15w − 4x+ 4y + z| ≤ 2,
• |w − 4x+ 4y − 15z| ≤ 2, and
• |317w + 54x− 182y − 31z| ≤ 2.

Also, we know f(β) ∈ SL2(Z) and det(f(β)) = 1, so w, x, y, and z are integers,
and wz − xy = 1. We shall use all these conditions on w, x, y, and z to derive a
contradiction.

We have

16|w − z| = |(w − 4x+ 4y − 15z) + (−(−15w − 4x+ 4y + z))|
≤ |w − 4x+ 4y − 15z|+ | − (−15w − 4x+ 4y + z)|
≤ 2 + 2 = 4,

so, as |w − z| is a nonnegative integer, we have |w − z| = 0, so w = z. Then
2|w| = |w + z| ≤ 2, so w = 1, 0, or −1. If w = 0, then we have z = w = 0, so
4|y−x| = |−15w−4x+4y+z| ≤ 2, so y = x, but then −x2 = wz−xy = 1. This is
a contradiction. Thus we must have w = 1 or −1. Then xy = wz−1 = w2−1 = 0,
so x = 0 or z = 0. Then, as w = z = 1 or −1, and x = 0 or z = 0, we can simplify
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|317w + 54x − 182y − 31z| ≤ 2 into one of four inequalities, depending on which
case we have. Specifically, one of the inequalities |54x− 286| ≤ 2, |54x+ 286| ≤ 2,
| − 182y + 286| ≤ 2, and | − 182y − 286| ≤ 2 must hold. However, as x and y are
integers, we can easily check that none of those inequalities can hold (as none of
284, 285, 286, 287, and 288 is a multiple of 54 or 182). Thus we have a contradiction.

Thus a choice for (βm−19, . . . , βm) that works exists, so the Proposition holds. �

3.5. Finishing the proof of the theorem. We can now readily prove Theorem 1.

Proof of Theorem 1. Choose any ε > 0. We shall show that, for all sufficiently
large n, at least a proportion of greater than 1− ε of the simple braids in Bn have
positive topological entropy. Of course, if ε > 1 then this is clear, so assume ε ≤ 1.

For convenience, say that a cycle in a permutation where the length of the cycle
is a multiple of 3 that is at least 63 is a good cycle. Choose a positive integer r that
is large enough so that (1− ε

2 )(1− (1− 1
620 )r) > 1− ε. Choose N sufficiently large

such that, for all n ≥ N , we have that, if we consider the proportion of permutations
in Sn that have at least r good cycles, then this proportion is greater than 1 − ε

2 .
(Such N clearly exists, by Proposition 14.) We claim that, for all positive integers
n ≥ N , the proportion of simple braids in Bn that have positive topological entropy
is greater than 1− ε.

Among the n! elements of Sn, let p be the number that have at least r good
cycles. We have p > (1 − ε

2 )(n!) > 0. Let S be the set of these permutations.
Consider a notion of equivalence on S where two permutations s1 and s2 in S are
equivalent if and only if

• they have the same non-good cycles as one another, and
• two elements of {1, . . . , n} are in the same good cycle (i.e., they are in the

same cycle, and that cycle is good) in s1 if and only if they are in the same
good cycle in s2.

Clearly this is indeed an equivalence relation, so it partitions S into equivalence
classes. Consider any such equivalence class. Consider any set of elements of
{1, . . . , n} that need to be the elements of a good cycle in some order. Note that
by using part (c) of Proposition 6, and other results from earlier, we can treat
the set as if it were {1, . . . , 3m} for some m ≥ 21 (corresponding the elements to
those of {1, . . . , 3m} in increasing order). Consider the (3m − 1)! possible cycles.
There are at least 2 ·6m−21 elements of Pm that map to some element with positive
topological entropy under ξ, so at least (3m− 1)! · 1

620 cycles map to some element
with positive topological entropy under ψ then ξ. Then, if there are r′ good cycles
in the elements of this equivalence class, then the proportion in which none of the
good cycles map to an element of positive topological entropy under ψ then ξ is at
most

(
1− 1

620

)s ≤ (1− 1
620

)r
.

Thus the proportion of elements of Sn that contain a good cycle that maps to
some element of positive topological entropy under ψ then ξ (again, pretending that

the relevant 3m-element set is {1, . . . , 3m}) is at least (1 − ε
2 )
(
1− 1

620

)r
> 1 − ε.

For any such braid, if it has topological entropy zero, then the braid we get by
only keeping a good cycle as in the previous sentence has topological entropy zero;
this will contradict Proposition 18. Thus all those braids have positive topological
entropy, so we are done. �
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4. Proof of Theorem 2

We now prove Theorem 2. We proceed by strong induction on n. The base cases
n = 2 and n = 3 are easy to check.

Consider a permutation braid σ corresponding to a permutation π. We know
from Proposition 5 that we can write σ as (σi1 · · · · · σ2 · σ1) · (σi2 · · · · · σ2) · · · · ·
(σin−1

· · · · · σn−1) for some values ij with j − 1 ≤ ij ≤ n − 1. (Having ij = j − 1
means that the corresponding product is empty.)

Lemma 21. For any k > 0, we have that the (i, j) entry of ρ(σk . . . σ1) is as
follows:

• if j = 1, then aij = −ti if i ≤ k and aij = 0 otherwise;
• if j > 1, then, if j−1 = i ≤ k or j = i > k, then aij = 1; otherwise aij = 0.

Proof. This can be directly checked by induction on k. �

Lemma 22. Consider the map fn from GLn−2(Z[t, t−1]) to GLn−1(Z[t, t−1]) de-
fined as follows: for M ∈ GLn−2(Z[t, t−1]), we let fn(M) be the n × n matrix
for which the (1, 1) element is 1, all other elements in the first row and column
are zero, and the matrix formed by deleting the first row and column of fn(M)
is M . Then fn is well-defined and is a homomorphism; furthermore, we have
fn(ρn−1(σi)) = ρn(σi+1) for i ≥ 2.

Proof. One can easily check that fn(X)fn(Y ) = fn(XY ) for all X,Y ∈
GLn−2(Z[t, t−1]). Then one can check fn(X) ∈ GLn−1(Z[t, t−1]) for all X ∈
GLn−2(Z[t, t−1]). Then fn is a well-defined homomorphism; finally, the last as-
sertion is clear. �

For any n×nmatrixX, let gn(X) be the (n−1)×(n−1) matrix formed by deleting
the first row and column of X. Note that, in general, gn(XY ) 6= gn(X)gn(Y ).

Lemma 23. For k ≥ 0, let M1, . . . ,Mk be matrices in which all entries in the
first row other than the (1, 1) entry are zero. Let Ni = gn(Mi) for i = 1, . . . k. Let
M = M1 . . .Mk. Then all entries in the first row of M other than the (1, 1) entry
are zero, and gn(M) = N1 . . . Nk.

Proof. This is easily verified for k = 2; then the desired statement follows easily by
induction on k (with base case k = 0). �

Let β′ ∈ Bn−1 be the braid (σi3−1 · · · · · σ3 · σ2) · (σi4−1 · · · · · σ3) · · · · · (σin−1−1 ·
· · · · σn−2). We have ρn(β) = ρn(σi1 · · · · · σ2 · σ1) · ρn(σi2 · · · · · σ2) · fn(ρn−1(β′)).
Let M = ρn(σi1 · · · · · σ2 · σ1) and M ′ = ρn(σi2 · · · · · σ2).

Note that we can apply Lemma 23 to M ′, as, for j ≥ 2, we have that all entries
of the first row of ρn(σj) other than the (1, 1) entry are zero; furthermore, we have
that gn(ρn(σj)) = ρn−1(σj−1). Thus all entries of the first row of M ′ other than
the (1, 1) entry are zero, and gn(M ′) = ρn−1(σi2−1 · · · · · σ1). Now we can apply
Lemma 23 to the product M ′ · fn(ρn−1(β′)). We get that all entries of the first row
of M ′ ·fn(ρn−1(β′)) other than the (1, 1) entry are zero, and gn(M ′ ·fn(ρn−1(β′))) =
gn(M ′)gn(fn(ρn−1(β′)) = ρn−1(σi2−1 · · · · · σ1)ρn−1(β′) = ρn−1(σi2−1 · · · · · σ1 · β′).
Let β′′ = σi2−1 · · · · · σ1 · β′. We can see that β′′ is a permutation braid in Bn−1.
Specifically, β′′ is the permutation braid that corresponds to the permutation π′ ∈
Sn−1 defined as (τi2−1 · · · · · τ1) · (τi3−1 · · · · · τ2) · · · · · (τin−1−1 · · · · · τn−2).
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Lemma 24. For k with 1 ≤ k ≤ n − 1, we have that, in ρn(σk · σ2), the entries
of the first column are as follows: for any j with 1 ≤ j ≤ n− 1, the (j, 1) entry is
tj−1 if j ≤ k and is 0 otherwise.

Proof. This can be directly verified by induction on k (with base case k = 1). �

Now, as the first column of fn(ρn−1(β′)) has (1, 1) entry 1 and all other entries
zero, we can see that the first column of M ′ · fn(ρn−1(β′)) is equal to the first
column of M ′, which is given by Lemma 24 with k = i2. The discussion after the
proof of Lemma 23 describes what all the other entries of M ′ · fn(ρn−1(β′)) are
(note that we can use the inductive hypothesis to determine what the entries of
gn(M ′ ·fn(ρn−1(β′))) = ρn−1(β′′) are). Thus all the entries of M ′ ·fn(ρn−1(β′)) are
(informally speaking) accounted for. Also, we know what the entries of M are by
Lemma 21 with k = i1. Then, as ρn(β) = M · (M ′ · fn(ρn−1(β′))), we can combine
information about M and M ′ · fn(ρn−1(β′)) to get the desired result about the
entries of ρn(β). Specifically, we can do the following.

Let $ ∈ Sn be (τi2 · · · · · τ2) · (τi3 · · · · · τ3) · · · · · (τin−1
· · · · · τn−1). We have

π = τi1 . . . τ1$. Then one can check that π(i) = $(i + 1) for i with 1 ≤ i ≤ i1,
π(i1 + 1) = $(1), and π(i) = $(i) for i > i1 + 1. Also, we have that $(1) = 1,
and, for i with 1 ≤ i ≤ n − 1, we have $(i + 1) = π′(i) + 1. Thus, we have that
π(i) = π′(i) + 1 for 1 ≤ i ≤ i1, π(i1 + 1) = 1, and π(i) = π′(i− 1) + 1 for i > i1 + 1.

Now let us consider ρn(β). The first column is M times the first column of
M ′ · fn(ρn−1(β′)), and we know that the first column of M ′ · fn(ρn−1(β′)) is the
same as the first column of M ′. We know the entries of M from Lemma 21 with
k = i1, and we know the first column of M ′ from Lemma 24 with k = i2, combining
these will give that the first column of ρn(β) is as desired. For the other columns
of ρn(β), one can see that this essentially amounts to duplicating one of the rows
of M ′ · fn(ρn−1(β′)), so one can get that the desired result holds, using the earlier
information about the relation between π and π′.

5. Future directions

It may be interesting to try to use Theorem 2 to obtain information about the
eigenvalues of the images of simple braids under the Burau representation, and then
to combine that information with Proposition 7 to obtain an improved version of
Theorem 1. However, it may be difficult to do so, as the characteristic polynomials
of matrices described by Theorem 2 do not seem easy to work with. More generally,
it may be interesting to try to improve Theorem 1. If we let zn be the number of
simple braids in Bn that have topological entropy zero, then Theorem 2 says that
zn = o(n!). By being careful with the bounds, the arguments in this paper show
that, in fact zn = O

(
n!

ln lnn

)
. It is likely that the combinatorics in Section 3.2 could

be improved so that a bound of zn = O
(
n!
lnn

)
results. Perhaps, a bound of the form

zn = O(cn) could be shown. (We note that no better asymptotic can be shown, as
zn ≥ 2bn/2c, since one can check that, for any subset of {τ1, τ3, τ5, . . . , τ2bn/2c−1},
the product of its elements (which commute) gives a permutation that corresponds
to a simple braid with topological entropy zero, and these 2bn/2c all give different
permutations.) It may be interesting to try to determine, not just an asymptotic,
but an exact formula for zn, or some means of computing it.

It also may be interesting to consider a generalization of simple braids. Specif-
ically, denote the half twist by ∆. Then, for integers j and k with j < k, one can
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consider the set of braids β for which β∆−j and ∆kβ−1 are positive. The set of
simple braids is the special case of j = 0 and k = 1; the case of j = −1 and k = 1 is
also of independent interest. What statements hold about the proportion of braids
with positive topological entropy in such sets?
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