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Introduction

Any quadratic of the form ax2 + bx + c can be solved with the
handy formula

x =
−b ±

√
b2 − 4ac

2a
.
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Introduction

Similarly, the formula for cubic polynomials is
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The quartic formula is too large to fit on a slide.
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Introduction

Abel’s Impossibility Theorem: There is no general solution in
radicals to polynomial equations of degree five or higher with
arbitrary coefficients.
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Group Theory

1 Group Theory
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3 Abel’s Theorem
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Definition of a Group

A group consists of a set and a well-defined binary operation.

We can denote groups as (G , ·).

We can also denote groups as simply G .
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Properties of a Group

Every group (G , ·) has the following properties:

Identity: There exists an identity element e such that for any
element g ∈ G , e · g = g · e = g .

Inverse: For every element g ∈ G , there exists an inverse
element g−1 ∈ G such that g · g−1 = g−1 · g = e.

Associativity: For any three elements a, b, c ∈ G ,
(a · b) · c = a · (b · c).

Closure: For any two elements a · b ∈ G , a · b is also
contained in G .

These properties are sufficient and necessary to define a group.
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Basic Example of a Group

One of the simplest examples of a group is (Z,+), or the group of
integers under addition.

Identity: 0 is an identity element because for any integer a,
a+ 0 = 0 + a = a.

Inverse: For any integer a, its additive inverse is −a.

Associativity: For any three integers a, b, c ,
(a+ b) + c = a+ (b + c).

Closure: The sum of any two integers is also an integer.
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Some Definitions

Subgroup: A subgroup is a group H contained within another
group G .

Order: The order of a group is the number of elements.
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Permutations

Permutation of degree n: A permutation of degree n is a
permutation of the integers 1, 2, . . . , n.

Every permutation of degree n can be written in the form(
1 2 . . . n
i1 i2 . . . in

)
,

where im is the image of the element m under the permutation.
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Permutations cont.

For example, the permutation(
1 2 3 4 5
3 2 4 1 5

)
maps 1 to 3, 3 to 4, 4 to 1, and 2 and 5 to themselves.

1, 3, and 4 are permuted cyclicly. We call such permutations cyclic
permutations, which have their own notation. This particular
permutation can be written as (134).
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Permutations cont.

All non-trivial permutations can be decomposed into a unique
product of independent cyclic permutations. For example, the
permutation (

1 2 3 4 5
3 5 4 1 2

)
can be written as (134) · (25).
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Permutations cont.

Permutations can be composed together.(
1 2 3 4 5
4 1 2 5 3

)
·
(

1 2 3 4 5
3 5 4 1 2

)
=

(
1 2 3 4 5
2 3 5 4 1

)
This provides us with a group operation.

Symmetric Group: The group of all permutations of degree n is
called the symmetric group of degree n and is denoted by Sn.
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Transpositions

Transposition: A transposition is a cycle consisting of two
elements.

Lemma

Every cycle can be written as a product of transpositions.

As an example,

(14325) = (1 · 5)(1 · 2)(1 · 3)(1 · 4).

Therefore, all permutations can be written as a product of
transpositions.

Permutations −→ Cycles −→ Transpositions
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Parity and Alternating Group

We call a permutation even or odd based on the parity of the
number of transpositions in any decomposition of that
permutation.

even permutation · even permutation = even permutation

Alternating Group: The group of all even permutations of degree
n is called the alternating group of degree n and is denoted by An.
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Normal Groups and the Commutant

Normal Subgroup: A normal subgroup is a subgroup H of G such
that for any element g ∈ G and h ∈ H, ghg−1 ∈ H.

Commutator: The element aba−1b−1 is the commutator of the
elements a and b.

Commutant: The commutant of a group G , denoted by K (G ), is
the set of all possible products of commutators of G .

Lemma

K (G ) is a normal subgroup of G .
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Soluble Groups

Soluble: A group G is soluble if the sequence of groups G , K (G ),
K2(G ), K3(G ), . . . ends, for a finite n, with the unit group {e}.

As an example,

K (S3) = {e, (123), (132)},

and

K ({e, (123), (132)}) = {e},

so S3 is soluble.
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Soluble Groups cont.

Lemma

Every subgroup of a soluble group is soluble.

Lemma

Suppose that a group G is not commutative and has no normal
subgroups other than {e} and G . Then G is not soluble.
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Alternating Group of Degree 5

We now show that A5, the alternating group of degree 5, is not
soluble.

We do this by using the previous lemma with the fact that A5 has
no normal subgroups besides itself and {e}.
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Alternating Group of Degree 5 cont.

Each of the possible even permutations of degree 5 belong in one
of these categories:

1. (), the identity. 1 such element exists.

2. (abc), a cycle of size three.

(
5

3

)
· 2 = 20 such elements exist.

3. (abcde), a cycle of size five. 4! = 24 such elements exist.

4. (ab)(cd), two cycles of size two.

(
5

2

)
·
(
3

2

)
/2 = 15 such

elements exist.
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Alternating Group of Degree 5 cont.

Lemma

If any normal subgroup of A5 contains at least one element of a
certain category, it contains all elements of that category.

Every normal subgroup of A5 must therefore contain a category
entirely, or not contain it at all. The identity is contained by
default. The sizes of categories 2, 3, 4 are 20, 15, 24.

Sizes of Possible Combinations

Neither 2 nor 3 2 3 2 & 3

No 4 1 21 16 36

4 25 45 40 60
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Alternating Group of Degree 5 cont.

Theorem

The order of a subgroup divides the order of the whole group
(Lagrange’s Theorem).

The order of A5 is 60.

The only two possible combinations of categories that had a size
that divides 60 are just category 1 and categories 1, 2, 3, and 4.
These combinations correspond with {e} and A5.

Therefore, the only normal subgroups of A5 are A5 and {e}.

Therefore, A5 is not soluble.
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Complex Analysis

1 Group Theory

2 Complex Analysis

3 Abel’s Theorem
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Definition of a Complex Number

We define the complex numbers C by adjoining i =
√
−1 to the

real numbers. Under this consideration, the elements of the
complex numbers are of the form a+ bi where a, b ∈ R with the
well-defined operations,

(a+ bi) + (c + di) = (a+ c) + (b + d)i

(a+ bi) · (c + di) = (ac − bd) + (ad + bc)i
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Properties of C

We note the following,

Both (C,+) and (C− {0}, ·) form groups.

The operations, +, · are commutative.

They follow the distributive law: for any a, b, c ∈ C,

a · (b + c) = a · b + a · c .

Under these considerations we say that C is a field.

Fundamental Theorem of Algebra

C is algebraically closed : the roots of all non-constant polynomials
with coefficients in C are also in C.
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Continuity

Definition

We say a function f (z) is continuous at z0 if for any ϵ > 0 there
exists a δ such that

|z − z0| < δ =⇒ |f (z)− f (z0)| < ϵ

where | · | is the standard Euclidean metric on C.

If a function is continuous for every point on its domain, we say
the function itself is continuous.
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Continuous Functions

Examples

Some trivial examples of continuous functions are the constant
function f (z) = c and the identity function g(z) = z .

Lemma

The sum and product of continuous functions in C are also
continuous. Thus, we can say that all polynomials are continuous.
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Parametric Curves

We can also express functions in terms of a parameter t as shown.

Figure: A parameterized unit circle, f (t) = cos(2πt) + isin(2πt) where
t ∈ [0, 1].
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Variation of Argument

Variation of Argument

For a continuous curve f (t) : [0, 1] → C− {0}, we define the
variation of the argument φ(t) to be the continuous function
describing the argument.

Figure: Trefoil, f (t) = 2cis(2πt)− cis(4πt) where t ∈ [0, 1].
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Riemann Surfaces

So far, we have dealt with curves that have a single unique image.
What about multi-valued functions like

√
z where there are two

complex solutions ±ω0?
We create a branch cut on the complex plane from 0 to −∞ twice.
For the first cut, we take the root with a positive real component:

Figure: Riemann Sheet 1 of
√
z (Abel’s Theorem in Problems and

Solutions by V.B. Alekseev)
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Riemann Surfaces cont.

Then, for the second cut, we take the the root with a negative real
component:

Figure: Riemann Sheet 2 of
√
z (Abel’s Theorem in Problems and

Solutions by V.B. Alekseev)
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Riemann Surfaces cont.

Stitching together these two Riemann ”sheets” give us a Riemann
surface that adequately describes

√
z :

Figure: Riemann Surface of
√
z (Abel’s Theorem in Problems and

Solutions by V.B. Alekseev)
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Branch Points and Non-uniqueness Points

Definition

We say point z0 is a non-uniqueness point if when a curve
intersects it, then the uniqueness of the Riemann sheet of its image
determined by continuity is lost.

Definition

We say point z0 is a branch point if it is a non-uniqueness point
such that for any curve a turn about z0 will change the Riemann
sheet of its image.
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Example of a Riemann Surface

Figure: Riemann Surface of
√
z (Wikipedia Commons)
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Monodromy property

Definition

Suppose for two curves C1 and C2 from z0 to z1 such that they do
not pass through any non-uniqueness points and C1 can be
continuously deformed to C2. If the value of a function w(z1)
when defined by continuity along C1 and C2 is always the same,
then we say w(z) has the monodromy property.
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Monodromy group

Definition

We define the monodromy group of a function f (z) as the group
generated the permutation of sheets upon a turn of a branch point.
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Example of a Monodromy group

1

2

Figure: The monodromy group of
√
z is S2.
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Solubility of Monodromy group

Definition

We say a function is representable by radicals if it can be expressed
in terms of f (z) = c and g(z) = z through finite operations of
addition, subtraction, multiplication, division, and taking the nth
root where n is an integer.

Lemma

All functions that are representable by radicals have soluble
monodromy groups.

The solubility of the monodromy group is an invariant under the
aforementioned operations!
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Statement of Abel’s Theorem

Abel’s Theorem

The solutions of a general polynomial equation of degree n ≥ 5 are
not representable by radicals through its coefficients.

In other words, there isn’t a good formula we can use to find the
roots of a polynomial of the form

a0x
5 + a1x

4 + a2x
3 + a3x

2 + a4x + a5 = 0

or any general polynomial of greater degree.
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Repeated roots

Consider the equation w5 − 5w + z = 0, where w is a function of
z . To find the values of z that lead to double roots of w , we can
take its derivative and set it to 0:

5w4 − 5 = 0 → w = −1, 1,−i , i

Plugging these back into our original equation, we find that the
corresponding values of z are z = −4, 4,−4i , 4i , respectively. Each
polynomial using one of these values will have a double root for w .
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Finding Branch Points

Figure: Riemann surface construction (Abel’s Theorem in Problems and
Solutions by V.B. Alekseev)

Assume r is very small. We can express any z as z = z0 + re iϕ,
where ϕ ∈ [0, 2π). Consider z0 = 4 and its corresponding double
root w0 = 1. We can rewrite our equation as

(w − 1)2(w3 + 2w2 + 3w + 4) = −re iϕ.
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Finding Branch Points cont.

For w very close to 1,

(w − 1)2 ≈ − r

10
e iϕ =

r

10
e i(ϕ+π).

Thus we have

w ≈ 1 +

√
r

10
e i(

ϕ+π
2

+nπ),

where n = 0, 1. This is a multi-valued function that can only be
represented by 2 sheets, with a branch point at z0 = 4.
In general, a fifth-order equation like the one we have will need five
Riemann sheets to be represented, as it has four branch points,
z = −4, 4,−4i , 4i .
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Drawing Schemes

Figure: Schemes of w5 − 5w + z = 0 (Abel’s Theorem in Problems and
Solutions by V.B. Alekseev)

These are the three ways we can connect our five sheets. None of
them are the same, and there exist no other constructions that
aren’t identical to one of these three.
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Drawing Schemes cont.

Definition

The transpositions (0, 1), (1, 2), (2, 3), ... are called elementary
transpositions.

Lemma

If a subgroup of group Sn contains all elementary transpositions,
then it coincides with the whole group Sn.
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Proof of Abel’s Theorem

Since the alternating group A5 is a subgroup of S5, by the lemma
stated earlier, S5 is not soluble. Thus, since our function w does
not have a soluble monodromy group, it is not representable by
radicals, so it is impossible to find the roots of a general fifth-order
polynomial in this way.
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