How to Share Your Secrets

Priscilla Zhu and Garima Rastogi

MIT PRIMES Computer Science Reading Group

Dec 6th, 2022

Priscilla Zhu and Garima Rastogi

Overview

Secure Communication

- Terminology
- Defining Correctness
- Defining Security

2 Encryption Schemes

- One-Time Pad
- Perfect Secrecy

3 Secret Sharing

- Terminology
- Correctness and Security
- Algorithms
- Example

Eavesdropping Erika

On the planet Osgiliath in a galaxy far, far, away...

Secure Communication

Secret-key Encryption

Components:

- Secret key, k
- Message *m*
- Ciphertext *c*
- Key Generation: $k \leftarrow Gen(1^n)$
- Encryption: $c \leftarrow Enc(k, m)$
- Decryption: $m \leftarrow Dec(k, c)$

Purpose

- Secret key k from key space \mathcal{K} : $k \leftarrow \mathcal{K}$
- Message *m* from message space \mathcal{M} : $m \leftarrow \mathcal{M}$
- Ciphertext *c* from ciphertext space $C: c \leftarrow C$

Algorithms within a cryptographic scheme:

- Key Generation Algorithm: $Gen(1^n)$: $k \leftarrow Gen$
- Encryption Algorithm: Enc(k, m): $\mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$
- Decryption Algorithm: Dec(k, c): $\mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}$

Purpose: If Akaali sends over m as c, Blathereen should be able to use k to correctly determine m.

Definition of Correctness

Definition

An encryption scheme is said to be correct if, for all $k \leftarrow \mathcal{K}$ and $m \leftarrow \mathcal{M}$, Dec(k, c = Enc(k, m)) = m.

Definition of Correctness

Definition

An encryption scheme is said to be correct if, for all $k \leftarrow \mathcal{K}$ and $m \leftarrow \mathcal{M}$, Dec(k, c = Enc(k, m)) = m.

Non-Example

Consider $Enc(k, m) = m^k$ and $Dec(k, c) = \sqrt[k]{c}$.

Definition of Correctness

Definition

An encryption scheme is said to be correct if, for all $k \leftarrow \mathcal{K}$ and $m \leftarrow \mathcal{M}$, Dec(k, c = Enc(k, m)) = m.

Non-Example

Consider $Enc(k, m) = m^k$ and $Dec(k, c) = \sqrt[k]{c}$.

- Let k = 3. Then, $Dec(k, Enc(k, m)) = \sqrt[3]{m^3} = m$.
- Let k = 2. Then, for m < 0, $Dec(k, Enc(k, m)) = \sqrt[2]{m^2} = -m$.

Definition of Security

Shannon's Perfect Secrecy

$$\forall \mathcal{M} \forall m \in Supp(\mathcal{M}), \forall c \in Supp(\mathcal{C}),$$
$$Pr[\mathcal{M} = m | Enc(\mathcal{K}, \mathcal{M}) = c] = Pr[\mathcal{M} = m]$$

Definition of Security

Shannon's Perfect Secrecy

$$\forall \mathcal{M} \ \forall m \in Supp(\mathcal{M}), \forall c \in Supp(\mathcal{C}),$$

 $Pr[\mathcal{M} = m|Enc(\mathcal{K}, \mathcal{M}) = c] = Pr[\mathcal{M} = m]$

Perfect Indistinguishability

 $\forall \mathcal{M} \ \forall m, m' \in Supp(\mathcal{M}),$

$$Pr[Enc(\mathcal{K}, m) = c] = Pr[Enc(\mathcal{K}, m') = c]$$

Definition of Security

Shannon's Perfect Secrecy

$$\forall \mathcal{M} \ \forall m \in Supp(\mathcal{M}), \forall c \in Supp(\mathcal{C}),$$

$$\Pr[\mathcal{M} = m | Enc(\mathcal{K}, \mathcal{M}) = c] = \Pr[\mathcal{M} = m]$$

Perfect Indistinguishability

 $\forall \mathcal{M} \ \forall m, m' \in Supp(\mathcal{M}),$

$$\Pr[Enc(\mathcal{K}, m) = c] = \Pr[Enc(\mathcal{K}, m') = c]$$

Theorem

An encryption scheme (*Gen*, *Enc*, *Dec*) satisfies perfect secrecy if and only if it satisfies perfect indistinguishability.

Encryption Schemes

• Gen:
$$k \leftarrow \{0,1\}^n$$
, thus $|\mathcal{K}| = 2^n$

- Gen: $k \xleftarrow{r} \{0,1\}^n$, thus $|\mathcal{K}| = 2^n$
- *n*-bit message *m*, thus $|\mathcal{M}| = 2^n$

- Gen: $k \stackrel{r}{\leftarrow} \{0,1\}^n$, thus $|\mathcal{K}| = 2^n$
- *n*-bit message *m*, thus $|\mathcal{M}| = 2^n$
- Enc(k, m): $c = m \oplus k$
 - XOR bitwise operator: $11 \oplus 10 = 01$ (commutative)

- Gen: $k \stackrel{r}{\leftarrow} \{0,1\}^n$, thus $|\mathcal{K}| = 2^n$
- *n*-bit message *m*, thus $|\mathcal{M}| = 2^n$
- Enc(k, m): $c = m \oplus k$
 - XOR bitwise operator: $11 \oplus 10 = 01$ (commutative)
- Dec(k, c): $m = c \oplus k$

$$m = c \oplus k$$
$$= m \oplus k \oplus k$$
$$= m \oplus 0^{n}$$
$$= m.$$

Perfect Indistinguishability Example

Consider $c = m \oplus k = 1001101$. What is *m*? What is *k*?

:

Perfect Indistinguishability Example

Consider $c = m \oplus k = 1001101$. What is *m*? What is *k*?

- First digits of (m, k) either (1, 0) or (0, 1)
- Second digits either (0, 0) or (1, 1)

.

Perfect Indistinguishability Example

Consider $c = m \oplus k = 1001101$. What is *m*? What is *k*?

- First digits of (m, k) either (1, 0) or (0, 1)
- Second digits either (0, 0) or (1, 1)

Thus, there are 2^n possibilities for (m, k).

Two-Time Pad Attack

Two-Time Pad Attack

Consider distinct messages m_1 and m_2 .

Two-Time Pad Attack

Consider distinct messages m_1 and m_2 . Then, for the chosen key k, their ciphers are $c_1 = m_1 \oplus k$ and $c_2 = m_2 \oplus k$.

Two-Time Pad Attack

Consider distinct messages m_1 and m_2 . Then, for the chosen key k, their ciphers are $c_1 = m_1 \oplus k$ and $c_2 = m_2 \oplus k$. Information leak:

$$c_1 \oplus c_2 = (m_1 \oplus k) \oplus (m_2 \oplus k)$$

= $m_1 \oplus m_2 \oplus k \oplus k$
= $m_1 \oplus m_2$.

Perfect Secrecy

Theorem

Shannon's theorem of perfect secrecy: for any perfectly secure scheme, $|\mathcal{K}| \geq |\mathcal{M}|.$

Perfect Secrecy

Theorem

Shannon's theorem of perfect secrecy: for any perfectly secure scheme, $|\mathcal{K}| \geq |\mathcal{M}|.$

Proof:

Figure 1: Prof. Vinod Vaikuntanathan's slides for 6.875 at MIT

- Every key is distinct
- One-time pad: *n*-bit message *m*; $k \leftarrow {r \choose 0, 1}^n$

Pseudorandom Generators (PRG)

Pseudorandom Generators: seed $\rightarrow b_1, b_2, b_3...$

Pseudorandom Generators (PRG)

Pseudorandom Generators: seed \rightarrow $b_1, b_2, b_3...$

Definition

A deterministic polynomial-time computable function $G: \{0,1\}^n \rightarrow \{0,1\}^m$ is a PRG if:

1) m > n, and

Pseudorandom Generators (PRG)

Pseudorandom Generators: seed $\rightarrow b_1, b_2, b_3...$

Definition

A deterministic polynomial-time computable function $G: \{0,1\}^n \to \{0,1\}^m$ is a PRG if:

1) m > n, and

2) For every probabilistic polynomial time (PPT) algorithm D, there is a negligible function μ such that:

$$|\Pr[D(G(U_n)) = 0] - \Pr[D(U_m)] = 0| = \mu(n)$$

However...

How can Akaali and Blathereen make sure that the secret stays hidden?

Secret Sharing

Priscilla Zhu and Garima Rastogi

How to Share Your Secrets

Definition

Goal: divide a secret into *n* components, where at least $1 \le t \le n$ components are needed to reconstruct the full secret.

Definition

Goal: divide a secret into *n* components, where at least $1 \le t \le n$ components are needed to reconstruct the full secret.

Definition

An (n, t) sharing scheme consists of:

- Share(secret s): outputs $\{s_1, s_2, ..., s_n\}$
- Reconstruct(I, $\{s_i\}_{i \in I}$): outputs s if $I \subseteq \{1, 2, ..., n\}$ where $|I| \ge t$.

Notions

Correctness

For all secrets s,

- Share(s) $\rightarrow \{s_1, s_2, ..., s_n\}$
- For any $I \subseteq \{1, 2, ..., n\}$ where $|I| \ge t$, Reconstruct $(I, \{s_i\}_{i \in I}) \rightarrow s$.

Notions

Correctness

For all secrets s,

- Share(s) $\rightarrow \{s_1, s_2, ..., s_n\}$
- For any $I \subseteq \{1, 2, ..., n\}$ where $|I| \ge t$, Reconstruct $(I, \{s_i\}_{i \in I}) \rightarrow s$.

Security

For all $I \in \{1, 2, ..., n\}$ where |I| < t, $\{s_i\}_{i \in I}$ should reveal no information about s.

Two Common Types

Polynomial Construction

Priscilla Zhu and Garima Rastogi

Two Common Types

Polynomial Construction

• Share(s): n points on the polynomial

Two Common Types

Polynomial Construction

- Share(s): *n* points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where $d \leq k - 1$.

Two Common Types

Polynomial Construction

- Share(s): n points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where $d \le k - 1$.

Two Common Types

Polynomial Construction

- Share(s): *n* points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where d < k - 1.

- Constant term necessary to reconstruct the secret
 - Shamir's Secret Sharing Algorithm

Two Common Types

Polynomial Construction

- Share(s): *n* points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where d < k - 1.

- Constant term necessary to reconstruct the secret
 - Shamir's Secret Sharing Algorithm

Additive Construction

• Share(s): n numbers adding up to an encoding of s

Two Common Types

Polynomial Construction

- Share(s): *n* points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where d < k - 1.

- Constant term necessary to reconstruct the secret
 - Shamir's Secret Sharing Algorithm

Additive Construction

- Share(s): n numbers adding up to an encoding of s
- Requires all n people to come together

Secret Sharing

Please flip over the cards we handed out, in order!

- 04.41.56.54.01.16
- 2 12.17.70.77.54.23

- 04.41.56.54.01.16
- 2 12.17.70.77.54.23
- 11.56.83.58.73.21

- 04.41.56.54.01.16
- 2 12.17.70.77.54.23
- 3 11.56.83.58.73.21
- 15.95.24.10.76.80

- 04.41.56.54.01.16
- 2 12.17.70.77.54.23
- 3 11.56.83.58.73.21
- 15.95.24.10.76.80
- 08.90.61.60.43.66

- 04.41.56.54.01.16
- 2 12.17.70.77.54.23
- 11.56.83.58.73.21
- 15.95.24.10.76.80
- 08.90.61.60.43.66
- 27.80.77.16.20.77

- 04.41.56.54.01.16
- 2 12.17.70.77.54.23
- 3 11.56.83.58.73.21
- 15.95.24.10.76.80
- 08.90.61.60.43.66
- 27.80.77.16.20.77

Sum:

80.82.73.77.69.83

Example

		Letter	ASCII	Letter	ASCII
	-	А	65	N	78
a 04 41 56 54 01 16		В	66	0	79
• • • • • • • • • • • • • • • • • • • •		С	67	Р	80
2 12.17.70.77.54.23		D	68	Q	81
11.56.83.58.73.21		Е	69	R	82
4 15.95.24.10.76.80	\longrightarrow	F	70	S	83
08.90.61.60.43.66		G	71	Т	84
		Н	72	U	85
21.00.11.10.20.11		I	73	V	86
Sum:		J	74	W	87
80.82.73.77.69.83		K	75	Х	88
		L	76	Y	89
		М	77	Z	90

		Letter	ASCII	Letter	ASCII
	-	А	65	N	78
04 41 56 54 01 16		В	66	0	79
		С	67	Р	80
12.17.70.77.54.23		D	68	Q	81
11.56.83.58.73.21		E	69	R	82
15.95.24.10.76.80 _		F	70	S	83
08.90.61.60.43.66		G	71	Т	84
a 27 90 77 16 20 77		Н	72	U	85
0 27.80.77.10.20.77		1	73	V	86
Sum:		J	74	W	87
80.82.73.77.69.83		K	75	Х	88
		L	76	Y	89
		Μ	77	Z	90

	Letter	ASCII	Letter	ASCII
	А	65	N	78
04 41 56 54 01 16	В	66	0	79
	С	67	Р	80
2 12.17.70.77.54.23	D	68	Q	81
3 11.56.83.58.73.21	E	69	R	82
④ 15.95.24.10.76.80	F	70	S	83
08.90.61.60.43.66	G	71	Т	84
A 27 80 77 16 20 77	Н	72	U	85
C 21.00.11.10.20.11	- I	73	V	86
Sum:	J	74	W	87
80.82.73.77.69.83	K	75	Х	88
	L	76	Y	89
	Μ	77	Z	90

PRIMES!

How to share your secrets?

- Secure Communication
 - Secret Key Encryption
 - Public Key Encryption
- Secret Sharing
 - Shamir's Secret Sharing Algorithm

Acknowledgements

We would like to thank ...

- ...our PRIMES mentors Lalita Devadas and Alexandra Henzinger,
- ...our parents,
- ...and the PRIMES coordinators for this amazing opportunity!

