How to Share Your Secrets

Priscilla Zhu and Garima Rastogi

MIT PRIMES Computer Science Reading Group

Dec 6th, 2022

Overview

(1) Secure Communication

- Terminology
- Defining Correctness
- Defining Security
(2) Encryption Schemes
- One-Time Pad
- Perfect Secrecy
(3) Secret Sharing
- Terminology
- Correctness and Security
- Algorithms
- Example

Eavesdropping Erika

On the planet Osgiliath in a galaxy far, far, away...

Secure Communication

Secret-key Encryption

Components:

- Secret key, k
- Message m
- Ciphertext c
- Key Generation: $k \leftarrow \operatorname{Gen}\left(1^{n}\right)$
- Encryption: $c \leftarrow \operatorname{Enc}(k, m)$
- Decryption: $m \leftarrow \operatorname{Dec}(k, c)$

Purpose

- Secret key k from key space $\mathcal{K}: k \leftarrow \mathcal{K}$
- Message m from message space $\mathcal{M}: m \leftarrow \mathcal{M}$
- Ciphertext c from ciphertext space $\mathcal{C}: c \leftarrow \mathcal{C}$

Algorithms within a cryptographic scheme:

- Key Generation Algorithm: Gen $\left(1^{n}\right): k \leftarrow G e n$
- Encryption Algorithm: $\operatorname{Enc}(k, m): \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$
- Decryption Algorithm: $\operatorname{Dec}(k, c): \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}$

Purpose: If Akaali sends over m as c, Blathereen should be able to use k to correctly determine m.

Definition of Correctness

Definition

An encryption scheme is said to be correct if, for all $k \leftarrow \mathcal{K}$ and $m \leftarrow \mathcal{M}$, $\operatorname{Dec}(k, c=\operatorname{Enc}(k, m))=m$.

Definition of Correctness

Definition

An encryption scheme is said to be correct if, for all $k \leftarrow \mathcal{K}$ and $m \leftarrow \mathcal{M}$, $\operatorname{Dec}(k, c=\operatorname{Enc}(k, m))=m$.

Non-Example

Consider $\operatorname{Enc}(k, m)=m^{k}$ and $\operatorname{Dec}(k, c)=\sqrt[k]{c}$.

Definition of Correctness

Definition

An encryption scheme is said to be correct if, for all $k \leftarrow \mathcal{K}$ and $m \leftarrow \mathcal{M}$, $\operatorname{Dec}(k, c=\operatorname{Enc}(k, m))=m$.

Non-Example

Consider $\operatorname{Enc}(k, m)=m^{k}$ and $\operatorname{Dec}(k, c)=\sqrt[k]{c}$.

- Let $k=3$. Then, $\operatorname{Dec}(k, \operatorname{Enc}(k, m))=\sqrt[3]{m^{3}}=m$.
- Let $k=2$. Then, for $m<0, \operatorname{Dec}(k, \operatorname{Enc}(k, m))=\sqrt[2]{m^{2}}=-m$.

Definition of Security

Shannon's Perfect Secrecy

$\forall \mathcal{M} \forall m \in \operatorname{Supp}(\mathcal{M}), \forall c \in \operatorname{Supp}(\mathcal{C})$,

$$
\operatorname{Pr}[\mathcal{M}=m \mid \operatorname{Enc}(\mathcal{K}, \mathcal{M})=c]=\operatorname{Pr}[\mathcal{M}=m]
$$

Definition of Security

Shannon's Perfect Secrecy

$$
\begin{aligned}
& \forall \mathcal{M} \forall m \in \operatorname{Supp}(\mathcal{M}), \forall c \in \operatorname{Supp}(\mathcal{C}), \\
& \qquad \operatorname{Pr}[\mathcal{M}=m \mid \operatorname{Enc}(\mathcal{K}, \mathcal{M})=c]=\operatorname{Pr}[\mathcal{M}=m]
\end{aligned}
$$

Perfect Indistinguishability

$$
\begin{aligned}
& \forall \mathcal{M} \forall m, m^{\prime} \in \operatorname{Supp}(\mathcal{M}), \\
& \qquad \operatorname{Pr}[\operatorname{Enc}(\mathcal{K}, m)=c]=\operatorname{Pr}\left[\operatorname{Enc}\left(\mathcal{K}, m^{\prime}\right)=c\right]
\end{aligned}
$$

Definition of Security

Shannon's Perfect Secrecy

$$
\begin{aligned}
& \forall \mathcal{M} \forall m \in \operatorname{Supp}(\mathcal{M}), \forall c \in \operatorname{Supp}(\mathcal{C}) \\
& \qquad \operatorname{Pr}[\mathcal{M}=m \mid \operatorname{Enc}(\mathcal{K}, \mathcal{M})=c]=\operatorname{Pr}[\mathcal{M}=m]
\end{aligned}
$$

Perfect Indistinguishability

$$
\begin{aligned}
& \forall \mathcal{M} \forall m, m^{\prime} \in \operatorname{Supp}(\mathcal{M}), \\
& \qquad \operatorname{Pr}[\operatorname{Enc}(\mathcal{K}, m)=c]=\operatorname{Pr}\left[\operatorname{Enc}\left(\mathcal{K}, m^{\prime}\right)=c\right]
\end{aligned}
$$

Theorem

An encryption scheme (Gen, Enc, Dec) satisfies perfect secrecy if and only if it satisfies perfect indistinguishability.

Encryption Schemes

One-Time Pad

Construction:

One-Time Pad

Construction:

- Gen: $k \stackrel{r}{\leftarrow}\{0,1\}^{n}$, thus $|\mathcal{K}|=2^{n}$

One-Time Pad

Construction:

- Gen: $k \stackrel{r}{\leftarrow}\{0,1\}^{n}$, thus $|\mathcal{K}|=2^{n}$
- n-bit message m, thus $|\mathcal{M}|=2^{n}$

One-Time Pad

Construction:

- Gen: $k \stackrel{r}{\leftarrow}\{0,1\}^{n}$, thus $|\mathcal{K}|=2^{n}$
- n-bit message m, thus $|\mathcal{M}|=2^{n}$
- Enc $(k, m): c=m \oplus k$
- XOR bitwise operator: $11 \oplus 10=01$ (commutative)

One-Time Pad

Construction:

- n-bit message m, thus $|\mathcal{M}|=2^{n}$
- Enc(k, m): c=m $\oplus k$
- XOR bitwise operator: $11 \oplus 10=01$ (commutative)
- $\operatorname{Dec}(k, c): m=c \oplus k$

$$
\begin{aligned}
m & =c \oplus k \\
& =m \oplus k \oplus k \\
& =m \oplus 0^{n} \\
& =m
\end{aligned}
$$

One-Time Pad

Perfect Indistinguishability Example

Consider $c=m \oplus k=1001101$. What is m ? What is k ?

One-Time Pad

Perfect Indistinguishability Example

$$
\text { Consider } c=m \oplus k=1001101 \text {. What is } m \text { ? What is } k \text { ? }
$$

- First digits of (m, k) either $(1,0)$ or $(0,1)$
- Second digits either $(0,0)$ or $(1,1)$

One-Time Pad

Perfect Indistinguishability Example

Consider $c=m \oplus k=1001101$. What is m ? What is k ?

- First digits of (m, k) either $(1,0)$ or $(0,1)$
- Second digits either $(0,0)$ or $(1,1)$

Thus, there are 2^{n} possibilities for (m, k).

One-Time Pad

Two-Time Pad Attack

One-Time Pad

Two-Time Pad Attack

Consider distinct messages m_{1} and m_{2}.

One-Time Pad

Two-Time Pad Attack

Consider distinct messages m_{1} and m_{2}. Then, for the chosen key k, their ciphers are $c_{1}=m_{1} \oplus k$ and $c_{2}=m_{2} \oplus k$.

One-Time Pad

Two-Time Pad Attack

Consider distinct messages m_{1} and m_{2}. Then, for the chosen key k, their ciphers are $c_{1}=m_{1} \oplus k$ and $c_{2}=m_{2} \oplus k$. Information leak:

$$
\begin{aligned}
c_{1} \oplus c_{2} & =\left(m_{1} \oplus k\right) \oplus\left(m_{2} \oplus k\right) \\
& =m_{1} \oplus m_{2} \oplus k \oplus k \\
& =m_{1} \oplus m_{2}
\end{aligned}
$$

Perfect Secrecy

Theorem
Shannon's theorem of perfect secrecy: for any perfectly secure scheme, $|\mathcal{K}| \geq|\mathcal{M}|$.

Perfect Secrecy

Theorem

Shannon's theorem of perfect secrecy: for any perfectly secure scheme, $|\mathcal{K}| \geq|\mathcal{M}|$.

Proof:

Figure 1: Prof. Vinod Vaikuntanathan's slides for 6.875 at MIT

- Every key is distinct
- One-time pad: n-bit message $m ; k \stackrel{r}{\leftarrow}\{0,1\}^{n}$

Pseudorandom Generators (PRG)

Pseudorandom Generators: seed $\rightarrow b_{1}, b_{2}, b_{3} \ldots$

Pseudorandom Generators (PRG)

Pseudorandom Generators: seed $\rightarrow b_{1}, b_{2}, b_{3} \ldots$

Definition

A deterministic polynomial-time computable function $G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a PRG if:

1) $m>n$, and

Pseudorandom Generators (PRG)

Pseudorandom Generators: seed $\rightarrow b_{1}, b_{2}, b_{3} \ldots$

Definition

A deterministic polynomial-time computable function $G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a PRG if:

1) $m>n$, and
2) For every probabilistic polynomial time (PPT) algorithm D , there is a negligible function μ such that:

$$
\left|\operatorname{Pr}\left[D\left(G\left(U_{n}\right)\right)=0\right]-\operatorname{Pr}\left[D\left(U_{m}\right)\right]=0\right|=\mu(n)
$$

However...

How can Akaali and Blathereen make sure that the secret stays hidden?

Secret Sharing

Definition

Goal: divide a secret into n components, where at least $1 \leq t \leq n$ components are needed to reconstruct the full secret.

Definition

Goal: divide a secret into n components, where at least $1 \leq t \leq n$ components are needed to reconstruct the full secret.

Definition

An (n, t) sharing scheme consists of:

- Share(secret s): outputs $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- Reconstruct $\left(I,\left\{s_{i}\right\}_{i \in I}\right)$: outputs s if $I \subseteq\{1,2, \ldots, n\}$ where $|I| \geq t$.

Notions

Correctness

For all secrets s,

- Share $(s) \rightarrow\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- For any $I \subseteq\{1,2, \ldots, n\}$ where $|I| \geq t$, Reconstruct $\left(I,\left\{s_{i}\right\}_{i \in I}\right) \rightarrow s$.

Notions

Correctness

For all secrets s,

- Share $(s) \rightarrow\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- For any $I \subseteq\{1,2, \ldots, n\}$ where $|I| \geq t$, Reconstruct $\left(I,\left\{s_{i}\right\}_{i \in I}\right) \rightarrow s$.

Security

For all $I \in\{1,2, \ldots, n\}$ where $|I|<t,\left\{s_{i}\right\}_{i \in I}$ should reveal no information about s.

Two Common Types

Polynomial Construction

Two Common Types

Polynomial Construction

- Share(s): n points on the polynomial

Two Common Types

Polynomial Construction

- Share(s): n points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where $d \leq k-1$.

Two Common Types

Polynomial Construction

- Share(s): n points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where $d \leq k-1$.

- I.e., $t=k$

Two Common Types

Polynomial Construction

- Share(s): n points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where $d \leq k-1$.

- I.e., $t=k$
- Constant term necessary to reconstruct the secret
- Shamir's Secret Sharing Algorithm

Two Common Types

Polynomial Construction

- Share(s): n points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where $d \leq k-1$.

- I.e., $t=k$
- Constant term necessary to reconstruct the secret
- Shamir's Secret Sharing Algorithm

Additive Construction

- Share(s): n numbers adding up to an encoding of s

Two Common Types

Polynomial Construction

- Share(s): n points on the polynomial
- Based in Lagrange's interpolation theorem

Theorem

Given k distinct points on a polynomial, we can determine a polynomial of degree d where $d \leq k-1$.

- I.e., $t=k$
- Constant term necessary to reconstruct the secret
- Shamir's Secret Sharing Algorithm

Additive Construction

- Share(s): n numbers adding up to an encoding of s
- Requires all n people to come together

Secret Sharing

Please flip over the cards we handed out, in order!

What's the secret??

(1) 04.41.56.54.01.16

What's the secret??

(1) 04.41.56.54.01.16
(2) 12.17.70.77.54.23

What's the secret??

(1) 04.41.56.54.01.16
(2) 12.17.70.77.54.23
(3) 11.56.83.58.73.21

What's the secret??

(1) 04.41.56.54.01.16
(2) 12.17.70.77.54.23
(3) 11.56.83.58.73.21
(9) 15.95.24.10.76.80

What's the secret??

(1) 04.41.56.54.01.16
(2) 12.17.70.77.54.23
(3) 11.56.83.58.73.21
(4) 15.95.24.10.76.80
(5) 08.90.61.60.43.66

What's the secret??

(1) 04.41.56.54.01.16
(2) 12.17.70.77.54.23
(3) 11.56.83.58.73.21
(9) 15.95.24.10.76.80
(3) 08.90.61.60.43.66
(-27.80.77.16.20.77

What's the secret??

(1) 04.41.56.54.01.16
(2) 12.17.70.77.54.23
(3) 11.56.83.58.73.21
(9) 15.95.24.10.76.80
(3) 08.90.61.60.43.66
(6) 27.80.77.16.20.77

Sum:
80.82.73.77.69.83

What's the secret??
(1) 04.41 .56 .54 .01 .16
(2) 12.17.70.77.54.23
(3) 11.56.83.58.73.21
(9) 15.95.24.10.76.80
(5) 08.90.61.60.43.66
(0) 27.80.77.16.20.77

Sum:
80.82.73.77.69.83

Letter	ASCII	Letter	ASCII
A	65	N	78
B	66	O	79
C	67	P	80
D	68	Q	81
E	69	R	82
F	70	S	83
G	71	T	84
H	72	U	85
I	73	V	86
J	74	W	87
K	75	X	88
L	76	Y	89
M	77	Z	90

What's the secret??
(1) 04.41.56.54.01.16
(2) 12.17.70.77.54.23
(3) 11.56.83.58.73.21
(9) 15.95.24.10.76.80
(5) 08.90.61.60.43.66
(0) 27.80.77.16.20.77

Sum:
80.82.73.77.69.83

Letter	ASCII	Letter	ASCII
A	65	N	78
B	66	O	79
C	67	P	80
D	68	Q	81
E	69	R	82
F	70	S	83
G	71	T	84
H	72	U	85
I	73	V	86
J	74	W	87
K	75	X	88
L	76	Y	89
M	77	Z	90

What's the secret??
(1) 04.41.56.54.01.16
(2) 12.17.70.77.54.23
(3) 11.56.83.58.73.21
(9) 15.95.24.10.76.80
(5) 08.90.61.60.43.66
(6) 27.80.77.16.20.77

Sum:
80.82.73.77.69.83

PRIMES!

| Letter | ASCII | Letter | ASCII |
| :---: | :---: | :---: | :---: | :---: |
| A | 65 | N | 78 |
| B | 66 | O | 79 |
| C | 67 | P | 80 |
| D | 68 | Q | 81 |
| E | 69 | R | 82 |
| F | 70 | S | 83 |
| G | 71 | T | 84 |
| H | 72 | U | 85 |
| I | 73 | V | 86 |
| J | 74 | W | 87 |
| K | 75 | X | 88 |
| L | 76 | Y | 89 |
| M | 77 | Z | 90 |

How to share your secrets?

- Secure Communication
- Secret Key Encryption
- Public Key Encryption
- Secret Sharing
- Shamir's Secret Sharing Algorithm

Acknowledgements

We would like to thank...

- ...our PRIMES mentors Lalita Devadas and Alexandra Henzinger,
- ...our parents,
- ...and the PRIMES coordinators for this amazing opportunity!

