
CONSECUTIVE PATTERNS IN COXETER GROUPS

YIBO GAO AND ANTHONY WANG

Abstract. For an arbitrary Coxeter group element σ and a connected subset J of the Coxeter di-
agram, the parabolic decomposition σ = σJσJ defines σJ as a consecutive pattern of σ, generalizing
the notion of consecutive patterns in permutations. We then define the cc-Wilf-equivalence classes
as an extension of the c-Wilf-equivalence classes for permutations, and identify non-trivial families
of cc-Wilf-equivalent classes. Furthermore, we study the structure of the consecutive pattern poset
in Coxeter groups and prove that its Möbius function is bounded by 2 when the arguments belong
to finite Coxeter groups, but can be arbitrarily large otherwise.

1. Introduction

The concept of consecutive pattern containment is well known in the context of permutations as
a way to characterize and generalize concepts such as peaks and runs. Specifically, we say that a
permutation σ consecutively contains another permutation π if σ contains a contiguous subsequence
with the same length and relative order as π. For example, a permutation σ consecutively contains
the pattern 123 if there exists an index i such that σ(i) < σ(i+ 1) < σ(i+ 2). Extensive research
has been conducted into various aspects of this containment relation (see [8] for a survey). Most
notably for this paper, some non-trivial classes of permutations π and τ that are consecutively
contained inside the same number of size n permutations σ for any n, called c-Wilf-equivalence
classes, have been identified (see [10, 11, 14]), and the structure of the poset formed by the partial
ordering relation defined by consecutive containment has been well studied (see [9]).

This containment relation has applications in dynamical systems, where it is possible to prove
that a sequence is not “random” if it never consecutively contains a certain pattern (see [7]). The
values along an orbit of a discrete time dynamical system always avoid some forbidden patterns,
which depend on exactly how the system operates, whereas completely random data almost surely
consecutively contains all possible patterns as time approaches infinity. In fact, Brandt, Keller, and
Pompe proved in [1] that the number of consecutive patterns that can be contained in the order of
the values in an orbit grows exponentially at a rate proportional to the topological entropy of the
dynamical system.

In algebraic combinatorics, consecutive patterns play a role in Robinson–Schensted recording
tableaux and the study of box-ball systems [5]. Consecutive patterns have also been seen in Schubert
calculus, as an important case of interval patterns, which is developed by Woo and Yong [18] to
study singular locus of Schubert varieties.

Classical pattern containment, in which the subsequence in σ does not necessarily have to be
contiguous, has been well-studied with clear applications to Schubert calculus. It is a famous
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result that a Schubert variety Xσ, indexed by a permutation σ, is smooth if and only if σ does not
classically contain 3412 and 4231 [4, 13]. In their seminal paper, Billey and Postnikov [2] introduced
patterns in finite Weyl groups defined via inversion sets to characterize the smoothness of Schubert
varieties in other Lie types. Billey-Postnikov patterns have since then been applied in numerous
fruitful research (see for example [12, 15, 16, 17]) to extend algebraic and combinatorics properties
of permutations to Weyl group elements, often time allowing us to see more structures. However,
consecutive patterns have not been studied systematically in other types.

In this paper, we generalize the notion of consecutive pattern containment in the symmetric
group to all Coxeter groups in a natural way using parabolic decomposition.

Definition 1.1. Let (W,S) and (W ′, S′) be irreducible Coxeter systems. Then σ ∈ W ′ consecu-
tively contains π ∈ W if there exists some J ⊆ S′ and an isomorphism φJ : S → J on the Coxeter
diagram which induces and isomorphism φJ : W → W ′(J) on the Coxeter groups that sends π to
σJ . In this case, we say that (J, φJ) is an occurrence of π in σ.

The relevant background material on Coxeter groups and parabolic decomposition are covered
in Section 2. The main results of this paper are as follows:

• In Section 3, we generalize the idea of c-Wilf-equivalence classes, where the “c” stands for
“consectutive” to cc-Wilf-equivalence classes, where the other “c” stands for “Coxeter”, and
identify families of cc-Wilf-equivalence classes (Theorem 3.7). We also provide conjectures
(Conjecture 3.10 and Conjecture 3.11) for future research.

• In Section 4, we study the Möbius function on the consecutive pattern poset, extending the
theory developed by Elizalde and McNamara [9]. We show that µ(π, σ) is bounded by a
small absolute constant (2 is enough) in finite Coxeter groups (Theorem 4.7) and can be
unbounded in infinite Coxeter groups (Theorem 4.8).

2. Preliminaries and Background

2.1. Coxeter groups. We refer readers to [3] for a detailed exposition on Coxeter groups. A
Coxeter system (of finite rank n) is a pair (W,S) consisting of a Coxeter group W and a set of
generators S = {s1, s2, . . . , sn}, such that W has a group presentation of the form

⟨s1, s2, . . . , sn | (sisj)mi,j = e for 1 ≤ i, j ≤ n⟩

where the exponents mi,j ∈ Z>0 ∪ {∞} satisfy the following relations:

• mi,i = 1 for all 1 ≤ i ≤ n,
• mi,j = mj,i for all 1 ≤ i, j ≤ n, and
• mi,j ≥ 2 for all 1 ≤ i, j ≤ n and i ̸= j.

We use mi,j = ∞ to mean that there is no relation between si and sj . Note that mi,j = 2 means
that si and sj commute.

A standard way of representing Coxeter systems visually is with Coxeter diagrams which consist
of a graph with vertex set S and undirected edges between any two r, s ∈ S satisfying mr,s ≥ 3,
with edges where mr,s > 3 being labeled with the corresponding value and edges where mr,s = 3
being unlabeled for simplicity. Note that commuting elements do not have edges between them.
We say that a Coxeter system (W,S) is irreducible if we cannot partition S into two sets I ⊔ J
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such that W is the direct product of WI and WJ . Equivalently, (W,S) is irreducible if its Coxeter
diagram is connected.

Example 2.1. The archetypal example of a Coxeter system is (Sn, S) where Sn is the symmetric
group on n elements and S = {s1, s2, . . . , sn−1} where si = (i, i+ 1) for all 1 ≤ i ≤ n− 1 is the set
of adjacent transpositions. One can check that

• s2i = e for any 1 ≤ i ≤ n− 1,
• (sisi+1)

3 = (si+1si)
3 = e for any 1 ≤ i ≤ n− 2, and

• (sisj)
2 = e for any 1 ≤ i, j ≤ n− 1 and |i− j| > 1,

so (Sn, S) is in fact a Coxeter system. This system is commonly denoted type An−1.
Figure 1 shows the Coxeter diagram for n = 6:

(S6, S): •
s1

•
s2

•
s3

•
s4

•
s5

Figure 1. Coxeter diagram for (S6, S)

For each element σ ∈ W , we can write σ as a product of generators si1si2 · · · siℓ . The minimal
number of generators ℓ over all such ways to write σ is known as the length of σ and is denoted ℓ(σ).
The corresponding product of generators si1si2 · · · siℓ is called a reduced word. Furthermore, the
set of all {i1, i2, . . . , iℓ} is called the support of σ (and is independent of the reduced word chosen)
and is denoted Supp(σ). We say that a Coxeter system (W,S) is finite if W has finite size. Any
finite W has a unique element w0(W ) of maximal length.

2.2. Parabolic decompositions. For any J ⊆ S, let WJ (also denoted W (J)) be the subgroup
of W generated by J ; this is called the parabolic subgroup generated by J . Additionally, let
W J = {σ ∈ W | ℓ(σs) > ℓ(σ) for all s ∈ J} be the parabolic quotient of J . For any J ⊂ S and
σ ∈ W , we have a unique factorization, called the parabolic decomposition, of the form σ = σJ · σJ
where σJ ∈ W J and σJ ∈ WJ , and satisfying ℓ(σ) = ℓ(σJ) + ℓ(σJ). For our purposes, it is helpful
to think of σJ as the element of maximal length in WJ we can divide (multiply by the inverse of) to
the right side of σ, and the leftover part is σJ where multiplying by any s ∈ J on its right increases
its length.

Now we are ready to define consecutive containment, the main object of study of this paper.
The following definition is rewritten from Definition 1.1 in Section 1.

Definition 2.2. Let (W,S) and (W ′, S′) be irreducible Coxeter systems. Then σ ∈ W ′ consecu-
tively contains π ∈ W if there exists some J ⊆ S′ and an isomorphism φJ : S → J on the Coxeter
diagram which induces and isomorphism φJ : W → W ′(J) on the Coxeter groups that sends π to
σJ . In this case, we say that (J, φJ) is an occurrence of π in σ.

Example 2.3. Consider the Coxeter system (W,S) of type A5 with S = {s1, s2, . . . , s5}, con-
structed as described in Example 2.1, and consider σ = 416253 ∈ W = S6, where the permutation
is written in one-line notation. Let J = {s2, s3, s4}. We then have the parabolic decomposition

σ = σJσJ = (s3s2s1s4s5) · (s4s3) = 412563 · 125346.
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Note that σJ = 125346, which has the same relative order of values as σ in positions 2, 3, 4, 5.
If we consider another type A3 Coxeter group (S4, {r1, r2, r3}), and an isomorphism of Coxeter
diagrams φJ which maps ri to si+1 for i = 1, 2, 3, then φJ(1423) = σJ . Thus, we say that σ
consecutively contains 1423.

For the rest of this section, we present some facts about parabolic decomposition. The following
propositions regarding values of σJ for particular σ are useful.

Proposition 2.4. Let (W,S) be a Coxeter system. Suppose σ ∈ W and J ⊆ S. Then (σu)J = σJu
for any u ∈ WJ .

Proof. Write σ in the form σJ ·σJ where σJ ∈ W J and σJ ∈ WJ . Then σu = σJ ·σJu, but σJ ∈ W J

and wJu ∈ WJ , so by the uniqueness of parabolic decomposition, (σu)J = σJu. □

Proposition 2.5. Let (W,S) be a Coxeter system. Suppose σ ∈ W and J ⊆ S. If r ∈ S \ J
commutes with all s ∈ J , then (σr)J = σJ .

Proof. We have σr = σJσJr = σJrσJ . For any s ∈ J , the four elements {σJ , σJr, σJs, σJrs} form
a diamond in the Bruhat order, with length ℓ, ℓ + 1, ℓ + 1, ℓ + 2 for some ℓ, (see Theorem 1.4 of
[6]). Since ℓ(σJ) < ℓ(σJs), we must have ℓ(σJr) < ℓ(σJrs), meaning that σJr does not have right
descents in J and σr = (σJr)σJ is the parabolic decomposition of σr. As a result, (σr)J = σJ . □

Corollary 2.6. Let (W,S) be a Coxeter system. Suppose σ ∈ W and J ⊆ S. If π ∈ W such that
any r ∈ Supp(π) commutes with any s ∈ J , then (σπ)J = σJ .

Proposition 2.7. Let (W,S) be a Coxeter system. Suppose σ ∈ W and J ⊆ S. Then (w0(W )σ)J =
w0(WJ)σJ .

Proof. It suffices to prove that

w0(W )σ · (w0(WJ)σJ)
−1 = w0(W )σσ−1

J (w0(WJ))
−1 ∈ W J .

Writing σ as σJσJ and using the fact that (w0(WJ))
2 = e, the above is simplifed to w0(W )σJw0(WJ) ∈

W J , i.e. ℓ(w0(W )σJw0(WJ)s) > ℓ(w0(W )σJw0(WJ)) for all s ∈ J which is equivalent to ℓ(σJw0(WJ)s) <
ℓ(σJw0(WJ)). Note that σJ · w0(WJ)s, and σJ · w0(WJ) are parabolic decompositions, so the
inequality follows from the length-additivity of parabolic decompositions and the maximality of
w0(WJ). □

3. Wilf-Equivalance Classes

Our first goal is to analyze Wilf-equivalence classes for this definition (Definition 1.1) of consec-
utive containment, as a generalization of c-Wilf-equivalence classes in permutations.

Definition 3.1. Two Coxeter group elements π, τ ∈ W for some arbitrary finite irreducible Coxeter
system (W,S) are said to be cc-Wilf-equivalent if for every finite irreducible Coxeter system (W ′, S′),
the number of elements σ ∈ W ′ consecutively containing π is the same as the number of elements
σ ∈ W ′ containing τ .

We say that for a Coxeter system (W,S), a diagram automorphism is a graph automorphism of
the Coxeter diagram, which induces a group automorphism on W that fixes S. The followings are
two of the more straightforward cc-Wilf-equivalences that apply generally.
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Proposition 3.2. Let (W,S) be a finite irreducible Coxeter system, and let π ∈ W be an arbitrary
Coxeter group element. Then:

(a) π is cc-Wilf-equivalent to w0(W )π, and
(b) if ϕ is a diagram automorphism of (W,S), then π is cc-Wilf-equivalent to ϕ(π).

Proof. For (a), by Proposition 2.7, (w0(W
′)σ)J = w0(W

′
J)σJ for all σ ∈ W ′, so for every occurrence

(J, φJ) of π in σ, we have that φJ sends w0(W )π to

φJ(w0π) = φJ(w0(W )) · φJ(π) = w0(W
′
J) · σJ = (w0(W

′)σ)J

since the isomorphism φJ sends the maximal element of W to the maximal element of W ′
J ; hence,

every occurrence of π in σ corresponds to an occurrence of w0(W )π in w0(W
′)σ ∈ W ′, and vice

versa. Therefore, π and w0(W )π are cc-Wilf-equivalent, as desired.
For (b), for every occurrence (J, φJ) of π in σ, the isomorphism φJ ◦ ϕ−1 from W to W ′(J)

sends ϕ(π) to σJ , and since ϕ−1 fixes S and φJ sends S to J , the isomorphism φJ ◦ ϕ−1 sends S
to J . Thus, (J, φJ ◦ ϕ−1) is an occurrence of ϕ(π) in σ. As in above, every occurrence of π in σ
corresponds to an occurrence of ϕ(π) in σ, and vice versa, so π and ϕ(π) are cc-Wilf-equivalent, as
desired. □

In the case of the Coxeter group being the symmetric group Sn (which is a Coxeter group of
type An−1), the above proposition corresponds to the following corollary:

Corollary 3.3. Let π = π1π2 · · ·πn be a permutation in one-line notation. Then π is cc-Wilf-
equivalent to

(a) its reverse: πR := πnπn−1 · · ·π1,
(b) its complement: πC := (n+ 1− π1)(n+ 1− π2) · · · (n+ 1− πn), and
(c) its reverse complement: πRC := (n+ 1− πn)(n+ 1− πn−1) · · · (n+ 1− π1).

Proof. We know that w0(An−1) = n(n − 1) . . . 21. Hence, w0(An−1)π = πC , which proves (b) by
Proposition 3.2 part (a). Furthermore, using the canonical set of generators for the symmetric
group Sn, the adjacent transpositions si = (i, i+1) for 1 ≤ i ≤ n− 1, the automorphism ϕ sending
si 7→ sn−i fixes S and sends π to πRC . Hence, (c) is proved by Proposition 3.2 part (b).

Finally, note that πR =
(
πC

)RC
, hence (a) is proved as well. □

Furthermore, since there is only one possible automorphism ϕ other than the identity for type
A (symmetric group), there are only two possible φJ for a particular J corresponding to the
consecutive pattern containment of either π or πJ . In other words, if π and σ are permutations,
then σ consecutively contains π in the Coxeter group sense if and only if σ consecutively contains
either π or πRC in the permutation pattern sense.

We call the cc-Wilf-equivalences in Proposition 3.2 trivial. We shall demonstrate the non-trivial
equivalence of families of Coxeter group elements.

Let (W,S) be a finite irreducible Coxeter system, and let π, τ ∈ W . Let β = π−1τ .
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Definition 3.4. For a fixed Coxeter group element σ ∈ W ′ of an arbitrary finite irreducible Coxeter
system (W ′, S′), define

Oπ(σ) := {(J, φJ(β)) | (J, φJ) is an occurrence of π in σ},
Oτ (σ) := {(J, φJ(β

−1)) | (J, φJ) is an occurrence of τ in σ}.

Suppose that for any two (J, bJ), (J
′, bJ ′) ∈ Oπ(σ) ∪ Oτ (σ) such that J ̸= J ′, any element of

Supp(bJ) commutes with and is distinct from any element of J ′. Then, we say that π and τ are
difference-disjoint with respect to σ. If π and τ are difference-disjoint with respect to all σ ∈ W ′

for any choice of (W ′, S′), then we say that π, τ are strongly difference-disjoint.

Definition 3.4 essentially means that if we right multiply some φJ(β) where (J, φJ) is an occur-
rence of π in σ (or symmetrically for τ), we do not affect (commute with the elements of) every
other occurrence of π or τ .

Example 3.5. Consider the two permutations of length 6 defined by π = 163425 and τ = 164325,
and the permutation of length 10 defined by σ = 1 10 3 4 2 9 7 6 5 8, all in one-line notation. Then
π, τ are group elements of the Coxeter system (S6, S) where S = {s1, s2, . . . , s5} and si = (i, i+1)
for 1 ≤ i ≤ 5, and σ is a group element of the Coxeter system (S10, R) where R = {r1, r2, . . . , r9}
and ri = (i, i+ 1) for 1 ≤ i ≤ 9.

It can be checked, either through direct parabolic decomposition or the relative order of elements
in the permutation, that σ contains π with occurrence at ({r1, r2, . . . , r5}, φ) where φ(si) = ri for
all 1 ≤ i ≤ 5, and σ contains τ with occurrence at ({r5, r6, . . . , r9}, φ′) where φ′(si) = r4+i for all
1 ≤ i ≤ 5. Furthermore, these are the only occurrences.

Thus, we can compute

Oπ(σ) = {({r1, r2, . . . , r5}, φ(β))},
Oτ (σ) = {({r5, r6, . . . , r9}, φ′(β−1))}.

The condition that π and τ are difference-disjoint with respect to σ is then equivalent to any
element of Suppφ(β) commuting with all {r5, r6, . . . , r9}, and any element Suppφ′(β) commuting
with all {r1, r2, . . . , r5}.

Note that Suppφ(β) ⊆ {r1, r2, . . . , r5}, so the first condition implies Suppφ(β) ⊆ {r1, r2, r3}.
But Suppφ(β) = φ(Suppβ), where φ is applied element-wise. Thus Suppβ ⊆ {s1, s2, s3}. Simi-
larly, the second condition implies Suppβ ⊆ {s3, s4, s5}.

Thus it is necessary for Suppβ ⊆ {s3} for π and τ to be difference-disjoint with respect to σ.
Conveniently, β = π−1τ = s3, so this is satisfied. However, we can see that the difference disjoint
condition is quite restrictive, even when only looking at one σ.

Definition 3.6. We say that π, τ are automorphic-equivalent if for every automorphism ϕ of W
fixing S, the automorphism ϕ fixes π if and only if it fixes τ .

Together, we have the following,

Theorem 3.7. If π and τ are both strongly difference-disjoint and automorphic-equivalent, then
they are cc-Wilf-equivalent.
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Proof. Let (W ′, S′) be an arbitrary finite irreducible Coxeter system. Let Cπ be the set of elements
of W ′ that contain π, and let Cτ be the set of elements of W ′ that contain τ .

The idea is to construct a function f : W ′ → W ′ that bijectively sends Cπ to Cτ by “applying”
β to all occurrences of π and β−1 to all occurrences of τ .

Formally, define f in the following way: for any σ ∈ W ′, using the notation from Definition 3.4,
we define O(σ) as the set obtained by removing elements of Oπ(σ) ∪ Oτ (σ) with the same J , and
picking a “canonical” choice for the second element if there are duplicates (which we can do in a
well defined way for both π and τ since they are automorphic-equivalent). Let

f(σ) := σ ·

 ∏
(J, bJ )∈O(σ)

bJ

 ,

where the order of the product does not matter since by the definition of strongly difference disjoint,
the terms all mutually commute.

Note that if (J1, φJ1) is an occurrence of π in σ, then we can write the parabolic decomposition
σ = σJ1σJ1 = σJ1φJ1(π). Thus

f(σ) = σJ1φJ1(π) · φJ1(β)

 ∏
(J, bJ )∈O(σ), J ̸=J1

bJ

 = σJ1

 ∏
(J, bJ )∈O(σ), J ̸=J1

bJ

 · φJ1(τ),

since φJ1(πβ) = φJ1(τ) ∈ WJ and every bJ (for J ̸= J1) commutes with every element of J1 by
definition.

By Proposition 2.4, since φJ1(τ) ∈ WJ1 , we have

f(w)J1 =

σJ1

 ∏
(J, bJ )∈O(σ), J ̸=J1

bJ


J1

· φJ1(τ),

so by repeatedly applying Proposition 2.5, which is valid since any element of Supp(bJ) commutes
with any element of J1 for J ̸= J1, we have

f(w)J1 =
[
σJ1

]
J1

· φJ1(τ) = φJ1(τ),

since σJ1 ∈ W J1 by definition. Therefore, if (J1, φJ1) is an occurrence of π in σ, then it is also an
occurrence of τ in f(σ). Similarly, we can prove that if (J2, φJ2) is an occurrence of τ in σ, then it
is also an occurrence of π in f(σ).

It follows that if σ ∈ Cπ, then f(σ) ∈ Cτ , so f(Cπ) ⊆ Cτ . Similarly f(Cτ ) ⊆ Cπ. But note
that for any σ ∈ W , we have f(f(σ)) = σ, hence f is its own two sided inverse, so it is bijective.
Therefore, |Cπ| = |Cτ | as desired. □

This can be seen as a rough generalization of the fact that “minimally overlapping” permutations
(patterns that when they appear, can share at most one element) are c-Wilf-equivalent if they have
the same first and last elements (see [8]).

The following is a quick example of how we can use Theorem 3.7 to establish some particular
families of cc-Wilf-equivalent classes.
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Proposition 3.8. Let n ≥ 8. Then π = 1 n−1 σ1σ2 · · ·σn−4 2 n and τ = 1 n−1 σ′
1σ

′
2 · · ·σ′

n−4 2 n,
where σ1σ2 · · ·σn−4 and σ′

1σ
′
2 · · ·σ′

n−4 are permutations of {3, 4, . . . , n− 2}, are strongly difference-
disjoint.

Proof. Since n ≥ 8, the elements π and τ can only be consecutively contained in some Coxeter
group element living in a Coxeter system of type A or D. We can check, through the relative order
of elements (specifically by looking at the position of the largest element, which will almost always
be one of n and n−1), that for any σ, for any two (J1, φJ1), (J1, φJ1) ∈ Oπ(σ)∪Oτ (σ) with J1 ̸= J2,
we have that J1 and J2 share at most one element, corresponding to an adjacent transposition on
the first or last two elements of an occurrence of π or τ . But this commutes with any β or β−1

which only permute inside the σ1σ2 · · ·σn−4 and σ′
1σ

′
2 · · ·σ′

n−4, as desired. □

We can check that automorphic-equivalence for permutations π, τ is equivalent to both or neither
of π = πRC and τ = τRC being true. Thus we arrive at the following corollary:

Corollary 3.9. Let n ≥ 8 and consider the permutations π and τ described in Proposition 3.8. If
both or neither of π = πRC and τ = τRC are true, then π and τ are cc-Wilf-equivalent.

To finish, we provide some conjectures about the strength of Theorem 3.7.

Conjecture 3.10. If π, τ are cc-Wilf-equivalent, then π and τ are automorphic-equivalent.

Conjecture 3.11. If π, τ are cc-Wilf-equivalent, then π and τ are difference-disjoint.

4. The Möbius Function of the Consecutive Pattern Poset

Definition 1.1 suggests the following natural definition of a poset.

Definition 4.1. The consecutive pattern poset is defined by π ≤ σ if σ consecutively contains π.
We also identify π = σ if π ≤ σ and σ ≤ π, meaning that there exists a diagram automorphism that
identifies these two elements. By convention, the identity element e of the trivial group satisfies
e ≤ τ for any Coxeter group element τ .

This poset can be defined for all Coxeter group elements simultaneously, but as we focus on the
intervals in this poset, we typically start with an ambient Coxeter system (W,S). It is a graded
poset, with the rank of σ being equal to the rank of the Coxeter group to which it belongs. We
denote this |σ|. Furthermore, if σ ∈ W for some irreducible Coxeter system (W,S), then S has
finite size, so there are finitely many J ⊆ S, hence the closed interval [π, σ] := {τ | π ≤ τ ≤ σ} is
finite. We can similarly define the intervals [π, σ), (π, σ], and (π, σ).

Recall that the Möbius function µ(π, σ) can be defined recursively as

µ(π, σ) =

1 if π = σ

−
∑

π≤τ<σ

µ(π, τ) if π < σ .

We can rewrite the second condition, which says if π < σ, then
∑

τ∈[π,σ] µ(π, τ) = 0.

We prove bounds on the size of the Möbius function when τ is an element of a finite irreducible
Coxeter group, which has been classified (see for example Appendix A1 of [3]).

First we prove some structural facts.
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Definition 4.2. Suppose (W,S) is a Coxeter system. For some s ∈ S, we say that a saturated
chain C in the consecutive pattern poset with maximum element σ ∈ W is s-anchored if for each
τ ∈ C, there exists an occurrence (Jτ , φJτ ) of τ in σ such that s ∈ Jτ .

The following lemma is useful.

Lemma 4.3. Suppose (W,S) is a Coxeter system whose Coxeter diagram is a path graph, and
suppose S = {s1, s2, . . . , sn} is an enumeration of S such that s1 corresponds to a degree 1 vertex
on the Coxeter diagram of (W,S), and si is connected to si+1 for all i = 1, 2, . . . , n− 1. Then if C
is an s1-anchored saturated chain, then∑

τ ∈C
µ(π, τ) ∈ {−1, 0, 1},

for any Coxeter group element π such that π ≤ τ for all τ ∈ C.

Proof. We assume C to be nonempty. Suppose C has maximum element σ. Proceed with strong
induction on |σ|.

We can manually check the base cases |σ| = |π|, where we must have σ = π, so the sum is 1, and
|σ| = |π|+ 1, where we must have µ(π, σ) = −1, so∑

τ ∈C
µ(π, τ) ∈ {0,−1},

depending on whether π ∈ C.
Now assume that, for some fixed π, the lemma is true for all s-anchored saturated chains C with

maximum element σ satisfying |σ| < n (where n > |π|+1 is the rank of (W,S)). We will show that
it is true for all C with maximum element σ ∈ W , i.e. |σ| = n since W is arbitrary.

The key is to look at the set C′ = [π, σ]\
[
π, σS\{s1}

]
. In particular, for any τ ∈ C′ with occurrence

(J, φJ) in σ, we must have J = {si, si+1, . . . , sj} for some integers i ≤ j by the restrictions on the
Coxeter diagram. But if i ̸= 1, then τ ≤ σS\{s1}, so we must have i = 1. It follows that C′ is also
an s1-anchored saturated chain, i.e. it is a saturated chain of the form

σ > σS\{sn} > σS\{sn−1,sn} > · · · ,

ending at some Coxeter group element. But we know that∑
τ ∈C′

µ(π, τ) =
∑

τ ∈ [π,σ]

µ(π, τ)−
∑

τ ∈ [π,σS\{s1}]

µ(π, τ) = 0− 0 = 0,

since |σ| > |π|+ 1.
Now, C also has the form

σ > σS\{sn} > σS\{sn−1,sn} > · · · ,
but may end at a different element. We have three cases: C′ ⊆ C, C′ ⊇ C, and C′ = C.

In the first case, we have∑
τ ∈C′

µ(π, τ) =
∑
τ ∈C

µ(π, τ)−
∑

τ ∈C′\C

µ(π, τ) = −
∑

τ ∈C′\C

µ(π, τ).



10 YIBO GAO AND ANTHONY WANG

•
σ

•
•

•
•
•

•
•

C \ C′

C′

[
π, σS\{sn}

]

•
σ

•
•

•
•

•
C′ \ C

C

[
π, σS\{sn}

]

•
σ

•
•

•
•

C = C′

[
π, σS\{sn}

]
Figure 2. Sketches of the Hasse diagrams for the interval [π, σ] with the interval[
π, σS\{sn}

]
omitted for clarity. The pertinent parts of C ∪ C′ are labeled.

But C′ \ C is another s1-anchored saturated chain with a strictly smaller rank of its maximum
element, so ∑

τ ∈C′

µ(π, τ) = −
∑

τ ∈C′\C

µ(π, τ) ∈ {−1, 0, 1},

by the induction hypothesis.
Similarly, if C′ ⊇ C, then C \ C′ is another s1-anchored saturated chain with a strictly smaller

rank of its maximum element, so∑
τ ∈C′

µ(π, τ) =
∑
τ ∈C

µ(π, τ) +
∑

τ ∈C\C′

µ(π, τ) =
∑

τ ∈C\C′

µ(π, τ) ∈ {−1, 0, 1},

by the induction hypothesis.
Finally, if C′ = C, then ∑

τ ∈C′

µ(π, τ) =
∑
τ ∈C

µ(π, τ) = 0.

□

Corollary 4.4. Consider two finite irreducible Coxeter systems (W,S) and (W ′, S′), and let π ∈ W
and σ ∈ W ′ such that π ≤ σ. If (W ′, S′) is of type A, B, F , H, or I, then |µ(π, σ)| ≤ 1.

Proof. These types have path graph like Coxeter diagrams, and the set {σ} is an s1-anchored
saturated chain (for any generator s1 corresponding to a degree 1 vertex on the Coxeter diagram),
so we conclude by Lemma 4.3. □

Proposition 4.5. Consider two finite irreducible Coxeter systems (W,S) and (W ′, S′), and let
π ∈ W and σ ∈ W ′ such that π ≤ σ. If (W ′, S′) is of type D, then |µ(π, σ)| ≤ 2.

Proof. Write S′ = {s1, s2, . . . , sn} where n = |S′| such that si, si+1 do not commute for 1 ≤ i ≤ n−1,
sn−2, sn do not commute, and any other pair commute.

For clarity, the Coxeter diagram is shown in Figure 3
Observe that if |σ| − |π| ≤ 2, a check of every possible poset interval gives the desired (since σ

covers at most 3 elements). Thus, assume |σ| − |π| > 2.
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Dn: •
s1

•
s2

•
s3

•
s4

· · · •
sn−2

•
sn−1

•
sn

Figure 3. Coxeter diagram for a Coxeter system of type Dn

Consider the (possibly empty) set [π, σ) \
[
π, σS′\{s1}

]
where we say

[
π, σS′\{s1}

]
= ∅ if π ̸≤

σS′\{s1}. Note that

µ(π, σ) = −
∑

τ ∈ [π,σ)

µ(π, τ) = −
∑

τ ∈ [π,σ)\
[
π,σS′\{s1}

]µ(π, τ),

since
∑

τ ∈
[
π,σS′\{s1}

] µ(π, τ) = 0. But [π, σ) \
[
π, σS′\{s1}

]
contains σS′\{sn}, the saturated chain C

containing the elements

σS′\{sn−1} > σS′\{sn−2,sn−1} > σS′\{sn−3,sn−2,sn−1} > · · · ,
and nothing else (if σS′\{sn} = σS′\{sn−1}, then we can ignore σS′\{sn} entirely). But by Corol-

lary 4.4,
∣∣µ(π, σS′\{sn})

∣∣ ≤ 1. Furthermore, C is an s1-anchored saturated chain with all elements
consecutively contained in a group element of the Coxeter system (W ′(S′ \ {sn}), S′ \ {sn}), which
is of type A, so by Lemma 4.3, ∣∣∣∣∣∑

τ ∈C
µ(π, τ)

∣∣∣∣∣ ≤ 1.

It follows that

|µ(π, σ)| ≤
∣∣µ(π, σS′\{sn})

∣∣+ ∣∣∣∣∣∑
τ ∈C

µ(π, τ)

∣∣∣∣∣ ≤ 2,

as desired. □

Proposition 4.6. Consider two finite irreducible Coxeter systems (W,S) and (W ′, S′), and let
π ∈ W and σ ∈ W ′ such that π ≤ σ. If (W ′, S′) is of type E, then |µ(π, σ)| ≤ 2.

Proof. As with Proposition 4.5, we label S′ such that the Coxeter diagram is as shown in Figure 4.

By the classification of finite irreducible Coxeter groups, n ≤ 8, but we do not use that fact here.
Similarly to Proposition 4.5, if |σ| − |π| ≤ 2, a check of every possible poset interval gives the

desired (since σ covers at most 3 elements). Thus, assume |σ| − |π| > 2.
Consider the (possibly empty) set [π, σ) \

[
π, σS′\{s1}

]
where we say

[
π, σS′\{s1}

]
= ∅ if π ̸≤

σS′\{s1}. Note that

µ(π, σ) = −
∑

τ ∈ [π,σ)

µ(π, τ) = −
∑

τ ∈ [π,σ)\
[
π,σS′\{s1}

]µ(π, τ).
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En: •
s1

•
s2

•
s3

· · · •
sn−3

•
sn−2

•
sn−1

•
sn

Figure 4. Coxeter diagram for a Coxeter system of type En

The set [π, σ)\
[
π, σS′\{s1}

]
contains only those σJ such that s1 ∈ J (ignoring duplicates). Its Hasse

diagram is shown in Figure 5.

•
σS′\{sn−2}

•
σS′\{sn}

•σS′\{sn−2,sn} • σS′\{sn−1,sn}

•σS′\{sn−2,sn−1,sn}

•σS′\{sn−3,sn−2,sn−1,sn}
...

Figure 5. Hasse Diagram for the set [π, σ) \
[
π, σS′\{s1}

]
, assuming no duplicates.

Observe that there is an s1-anchored saturated chain C1 with elements,

σS′\{sn−2} > σS′\{sn−2,sn} > σS′\{sn−2,sn−1,sn} >> σS′\{sn−3,sn−2,sn−1,sn} > · · · .

The rest of the set [π, σ) \
[
π, σS′\{s1}

]
consists of the two elements σS′\{sn} and σS′\{sn−1,sn}. But

σS′\{sn} is a group element of the Coxeter system (W ′(S′ \ {sn}), S′ \ {sn}), which is of type D,

so as we did for the proof of Proposition 4.5, consider the set
[
π, σS′\{sn}

]
\
[
π, σS′\{s1,sn}

]
. This

contains σS′\{sn−1,sn} and an s1-anchored saturated chain C2 with elements,

σS′\{sn−2,sn} > σS′\{sn−2,sn−1,sn} >> σS′\{sn−3,sn−2,sn−1,sn} > · · · .
Note that although they look very similar, the chain C2 does not necessarily end at the same
minimal element as the chain C1. Now we have,

µ
(
π, σS′\{sn}

)
+ µ

(
π, σS′\{sn−1,sn}

)
= µ

(
π, σS′\{sn−1,sn}

)
−

∑
τ ∈ [π,σS′\{sn}]\

[
π,σS′\{s1,sn}

]µ(π, τ)

= −
∑
τ ∈C2

µ(π, τ).
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It follows that

µ(π, σ) = −
∑
τ ∈C1

µ(π, τ) +
∑
τ ∈C2

µ(π, τ).

But both C1 and C2 are s1-anchored saturated chains, so

|µ(π, σ)| =

∣∣∣∣∣∣
∑
τ ∈C1

µ(π, τ)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
τ ∈C2

µ(π, τ)

∣∣∣∣∣∣ ≤ 2,

as desired. □

We summarize the previous results in Theorem 4.7:

Theorem 4.7. If σ is an element of a finite irreducible Coxeter system, then |µ(π, σ)| ≤ 2.

However, things are different in infinite Coxeter groups.

Theorem 4.8. If the Coxeter system to which π belongs, i.e. (W ′, S′), is not necessarily finite,
then |µ(π, σ)| can be unbounded.

Proof. We provide an explicit construction.
Consider the Coxeter system (W,S) with S = {s0, s1, s2, . . . , s2n} for some positive integer n

such that si and sj commute for all 1 ≤ i, j ≤ 2n and s0 has no relation with any si for 1 ≤ i ≤ 2n
(i.e. m0,i = ∞). Let

σ = s2s0s4s0s6s0 · · · s2ns0s1s3s5 · · · s2n−1.

We can check that, using the fact that s1, s3, s5, ... s2n−1 commute but s0 has no relation with
them, for any 1 ≤ i ≤ 2n,

σS\{si} =

{
s1s3 . . . si−2si+2 . . . s2n−1 if i is odd

s0si+2s0 . . . s2ns0s1s3 . . . s2n−1 if i is even
.

Similarly, σS\{s2i−1,s2i} = s1s3 . . . si−2si+2 . . . s2n−1 for any 1 ≤ i ≤ n. Notice that these are all
isomorphic by permuting the tuple of pairs ((s1, s2), (s3, s4), . . . , (s2n−1, s2n)). However, all of the
ones of the form s0si+2s0 . . . s2ns0s1s3 . . . s2n−1 are distinct.

Thus if we pick π = σS\{s1,s2} = σS\{s3,s4} = . . . = σS\{s2n−1,s2n}, we have that the interval [π, σ]
is a poset with n + 1 other elements, namely τ = σS\{s1} and τ = σS\{s2}, σS\{s4}, . . . , σS\{s2n},
which each cover π and are covered by σ.

For each of these τ , µ(π, τ) = −1. µ(π, π) = 1, so we have

µ(π, σ) = −(1 + (n+ 1) · (−1)) = n.

Since n can be arbitrarily large, we are done. □

Nevertheless, it appears that µ(π, σ) cannot grow too quickly in terms of |σ|. In fact, we conjec-
ture the following:

Conjecture 4.9. For any π, σ such that π ≤ σ, |µ(π, σ)| ≤ |σ|.
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