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Abstract

Online Reinforcement Learning (RL) is a fast-growing branch of machine
learning with increasingly important applications. Moreover, making RL
algorithms robust against perturbations is essential to their utility in the
real world. Adversarial RL, in which an attacker attempts to degrade an
RL agent’s performance by perturbing the environment, can be used to
understand how to robustify RL systems. In this work, we connect an ad-
versarial attack model to streaming algorithms: the victim samples paths
based on its interactions with the environment, while the adversary cor-
rupts this stream of data. We construct an attack algorithm in Markov
Decision Processes (MDPs) for a random-sampling victim and prove its
optimality, in addition to investigating an adversarial strategy against an
epsilon-greedy victim with a warm start period. In the epsilon-greedy set-
ting, we bound adversarial corruption and analyze how to exploit this highly
adaptive model to improve upon warm start budget. Experimentally, we
show that our algorithm outperforms baseline attacks, and we generate
random MDPs to characterize how their general-case structure affects the
adversary’s ability to maintain its warm start corruption.

1 Introduction

1.1 Background

The use of Reinforcement Learning (RL) to solve many classes of problems has skyrocketed
over the last decade and has achieved stellar results in several tasks and fields [9, 14, 16]. RL
is a branch of Machine Learning distinct from both Supervised and Unsupervised Learning,
where an agent dynamically interacts with an environment to garner information about it
and learn a policy, which dictates its behavior. It does not require the use of large, labeled
data sets in the way Supervised Learning does; how could a computer learn to play chess by
shoveling chess game data through a giant neural network? Instead, it simply needs access
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to the training environment (e.g. chess, Go, or Atari), and the computer plays on its own
and gradually builds up skill. The goal of the agent is to find a policy that optimizes some
objective, usually pertaining to the cumulative reward from the environment. For example,
an RL agent learning to play Atari games might try to learn a policy that allows it to get
the most points in the game before it dies [9].

Because the agent is simultaneously trying to gather information about the environment
while also maximizing reward, the agent is said to balance exploration with exploitation.
In an often-used model termed ϵ-greedy, the parameter ϵ represents the relative weighting
between exploration and exploitation, as it is the probability that controls whether we choose
the best known action (exploitation) or choose a random action (exploration).

However, many RL algorithms suffer from poor performance upon deployment, owing to
significant differences between training conditions and test conditions, which can be caused
by human biases, modeling errors, or actual adversaries. These problems can be rectified
by training the agent to be robust ; that is, maintain some degree of performance despite
a shift from initial conditions. To model such disturbances, many works introduce an ad-
versary, which aims to disrupt or degrade the victim agent’s performance by perturbing
various aspects of the learning environment such as the victim’s rewards [7, 19], the victim’s
observations [6], the victim’s memory, and the environment transition dynamics [18, 11].

Yet, the question of how myopic sampling strategies such as ϵ-greedy perform under such
adversarial corruptions remains unanswered. ϵ-greedy is one of the most popular RL sam-
pling strategies due to its simplicity and empirical success for many practical problems [2].
Studying epsilon-greedy’s performance under adversarial conditions is vital to understand-
ing the robustness of these numerous implementations. What happens when an ϵ-greedy
agent is exposed to an adversary? How much can an adversary degrade an ϵ-greedy victim’s
performance by poisoning the training time data it learns from? These questions, in the
context of MDP environments, drive the motivation behind this paper.

Simultaneously, we fill a gap in the field of online learning, where an agent has access to a
stream of data that it uses to make decisions. We frame an adversarial attack as a streaming
algorithm in which the victim learns a behavior based on the stream of its previous samples,
while the adversary needs to select when and where to perturb, with the goal of degrading
the victim’s performance as much as possible. We provide analysis of maximum corruption
for both a random-sampling victim and the epsilon-greedy victim, along with theoretical
and experimental analysis of the corruption’s degradation over time. These investigations
are fundamental to understanding the robustness of a highly adaptive model in streaming
settings.

2 Related Work

2.1 Streaming Algorithms

The area of Reinforcement Learning we focus on is Online RL, in which the learning agent
dynamically interacts with its environment and utilizes the stream of data generated to ad-
just its behavior incrementally. Some real-world examples include making trading decisions
in financial markets and real-time speech processing [10, 5].

Online RL Algorithms
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Q-Learning is one of the most popular Online RL algorithms and the algorithm we imple-
mented empirically to test our attacks on. In this method, each pair of states and actions is
given a Q-value which prescribes which action to take next [15]. These Q-values are updated
according to the data stream generated as the agent navigates its environment.

Another well-known Online RL algorithm is PPO, which computes an update at each step
to minimize a cost function while maintaining proximity to the previous policy. It does so
by optimizing a clipped surrogate objective function using stochastic gradient descent [13].

Attacks on Streaming Algorithms. Previous works on attacking streaming algorithms
include Gong et al. [5] and Natali et al. [10]. The former of which uses partially observable
decision process concepts from RL such as imitation learning, while the latter draws parallels
to the k-secretary problem from optimal stopping theory. These works consider adversaries
which do not have access to the entire original data set and must learn alongside the victim.
Our setting considers a more specific and stronger adversarial model which has access to the
generator of the stream’s contents, the MDP’s structure and rewards, along with whether
the victim is currently sampling randomly or greedily, but it does not have access to the
victim’s current Q-values.

Moreover, we focus on a poisoning attack, in which the adversary corrupts the stream
during the lesser-explored training process instead of the evaluation phase. This is more
computationally difficult as the adversary needs to factor in the victim’s ever-changing policy
into its corruptions. Previous work on poisoning streaming algorithms include NETTACK,
which exploits graph structure and node features to attack deep learning models relying on
graph convolutions [20]. Our work also exploits graph structure, but for the different goal
of maximizing adversarial budget to manipulate the perceived reward of paths.

Zhang et al. [19] is one of the few adaptive poisoning attacks against an ϵ-greedy Q-learning
victim. This work investigates manipulating the victim to follow the target policy in some
number of important states, a subset of the environment’s state space. The paper imple-
ments a Fast Adaptive Attack that ranks each of these important states based on distance
from the start state. Instead of attacking all states at the same time like Xu et al. [18],
Zhang et al. [19] attacks each important state one at a time, allowing the target policy to
be preserved at each state. Although the paper proves that for its “Non-Adaptive Attack,”
the objective value and ϵ-greedy’s covering time is O(e|S|), so that attack is slow. We aim
to further investigate what exactly an optimal adversarial strategy looks like against an
ϵ-greedy victim.

2.2 Sampling Strategies

Ideally, an agent is able to operate well in stochastic settings, wherein the agent can sample
rewards that are not subject to adversarial corruption. The manner in which the agent
samples from the MDP is crucial to its performance, and this work considers ϵ-greedy as
the sampling strategy of focus.

Purely Random Sampling or Purely Greedy Sampling. One näıve sampling ap-
proach is to simply take a random action. While this strategy carries the advantage that no
single path will become excessively favored and the agent will get a fairly accurate picture
of the MDP given enough samples, it is not efficient because much time is wasted sampling
paths that are already known to be suboptimal.
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In contrast to random sampling, the agent could instead always sample the path that,
according to its current knowledge, yields the most reward. This strategy is also primitive
because such an agent would continually choose the first path it samples without variation–it
would have no ability to test other paths to see if they are better.

Ultimately, neither strategy is robust. A victim operating under these strategies would be
easily susceptible to adversarial corruption.

Epsilon-Greedy. ϵ-greedy thus represents a balance between these two approaches. Al-
though it is one of the most popular sampling strategies, its theoretical guarantees are
underexplored. Simply stated, ϵ-greedy policy involves sampling a random suboptimal ac-
tion1 ϵ fraction of the time, and sampling the highest-Q-value action 1 − ϵ fraction of the
time [15]. That is,

π(s) =

{
argmaxa∈A(s) Q(s, a) with probability 1− ϵ,

rand(A(s)− argmaxa∈A(s) Q(s, a)) with probability ϵ
.

Previous works about ϵ-greedy’s theoretical guarantees include Dann et al. [2]. In order to
categorize the kinds of problems ϵ-greedy performs well in, this paper proposes a complex-
ity measure, the myopic exploration gap, which correlates to MDP structure, exploration
policy, and value function. Moreover, the paper shows that sample-complexity of myopic
exploration strategies, such as ϵ-greedy, is proportional to the inverse square of the myopic
exploration gap.

Epsilon Annealing [15]. A slight variation on ϵ-greedy, annealing entails the gradual
decrease of ϵ’s value over time. The justification for such an approach is that as time goes
on, the agent is expected to attain a more precise picture of the MDP, and consequently,
there is less uncertainty in its decisions. Therefore, the chance with which it makes a random
(explorative) decision should decrease over time.

Upper Confidence Bound (UCB) Action Selection. An alternative to ϵ-greedy, UCB
weights actions according to their potential to actually be optimal [15], as per the equation

a(t) = argmax
a

[
Qt(a) + c

√
ln t

Nt(a)

]
.

The term being added to the Q-value represents an upper-bound on our uncertainty about
the action’s actual value. As time increases, that term approaches 0 (since lim

t→∞
ln t
t = 0), so

our uncertainty naturally decreases with time [15].

This work does not consider UCB, which is significantly more complex mathematically
speaking, opting instead to focus on ϵ-greedy strategies. After all, ϵ-greedy is well-known
and commonly used so there is practical benefit in focusing on it [2]

1This work considers a victim who makes a decision exactly once per episode. Thus, if making a random
decision, it chooses uniformly from the set of all paths it can take through the MDP, other than the optimally
perceived path.

4



2.3 Adversarial Attacks and Defenses

An adversarial attack in the context of Reinforcement Learning is any protocol employed
against the agent, with the intent of negatively influencing its behavior [4]. That intent may
include coercing the victim into learning a specified target policy or degrading the victim’s
performance in test-time.

Previous work in Adversarial RL includes Rakhsha et al. [12], which aims to poison the
environment such that the target policy is optimal in this poisoned setting. Thus, the victim
ends up learning the target policy by optimizing its rewards in the poisoned environment.
This paper only considers a universal perturbation: a single, non-adaptive attack at the
very start of the training period. While we also consider a poisoning attack, our strategy is
online, meaning the adversary continues to attack throughout the training process.

Essentially, a basic approach to defense is to train an agent over a wide variety of environ-
ments with the goal of learning a policy that performs well when evaluated in an arbitrary
environment. However, policies that perform well in the average case may perform poorly
on a small fraction of particularly difficult environments and are therefore susceptible to
worst-case adversarial attacks [3].

Therefore, the Robust RL objective is to find a policy that performs optimally under the
worst-case environment scenario. The victim tries to maximize its reward by choosing an
optimal policy, while the adversary tries to force the victim to get lower reward by choosing
the worst environment drawn from some set of possible ones [4]. The Robust RL objective
is to find a policy π that satisfies:

max
π

min
p

Eπ,p

[∑
t

Rt

]
,

where p is the environment and Rt is the reward at time t.

There are several methods that satisfy the Robust RL objective [17, 8, 1] that all incorporate
the maximin framework above in unique ways. For instance, Tessler, Efroni, and Mannor
[17] introduces an adversary with the ability to perturb the agent’s actions during training
time.

2.4 Our Focus

In our research, we want to tackle the following questions:

1. How can we identify the optimal adversarial strategy in this strongly adaptive model?

2. How well do stochastic online learning models perform under our adversarial strategy?

3. Which kinds of MDPs are robust to adversarial perturbations? That is, how does the
structure of an MDP affect the performance of an adversarial strategies?

5



3 Model

3.1 MDPs and Q-Learning

The environment in which the RL agent operates is classically conceived of as a Markov
Decision Process (MDP).

Definition 3.1 (Markov Decision Process). An MDP is characterized by the quadruple
(S,A, R,P), where:

• The state space S is the set of all possible states the agent may enter,

• The action space A is the set of all possible actions the agent may take,

• The reward function R: S ×A → R prescribes the reward attained by the victim upon
taking a given action in a given state,

• The transition dynamics function P : (s′|s, a) → [0, 1] denotes the probability of the
agent transitioning to a new state s′ given its presence in s and taking the action a.

In many implementations of Reinforcement Learning, each state-action pair is assigned
a Q-value, and these values dictate which action the agent takes. In addition to these
components, we also consider a learning rate α, and a discount factor γ ∈ [0, 1). The
learning rate α, present in many other branches of machine learning as well, describes the
degree to which we change the Q-values every iteration; it represents the algorithm’s overall
resistance to change. Also, the discount rate weights future reward relative to immediate
reward [15]. Its implementation is necessary to avoid the explosion of Q-values during
Q-learning, a fundamental RL learning algorithm used in a variety of applications:

Algorithm 1 Q-learning [15]

input: α, ϵ, γ,MDPM, initialized Q, initial state s0

1: for episode = 1 to N do
2: st ← s0
3: while st is not terminal do
4: at ← sample(π(·|st))
5: st+1 ← sample(p(st, at))
6: rt ← R(st+1)
7: Q(st, at)← (1− α)Q(st, at) + α(rt + γmaxat+1

Q(st+1, at+1))
8: st ← st+1

9: end while
10: end for

Moreover, we consider an adversary that may perturb a sample with probability p, and if
it happens that it may do so, the adversary’s total reward perturbation may not exceed δ.

3.2 Maze MDP

Although our theoretical and general results apply to a more general class of MDPs, a simpler
and more concrete way of conceiving of an MDP is a maze challenge situated in a grid. This
setting can be easily visualized and also can represent a generalized MDP with each open
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slot in the maze representing a state. The action space is {RIGHT,LEFT,UP,DOWN}.
However, our maze is nondeterministic, so choosing the action right does not guarantee the
agent will take a step in that direction.

An example grid layout is depicted above. The agent must start at the green square and,
without ever visiting a previously traversed square, make its way to a red terminal state.
The reward it acquires is represented by numbers strewn across the maze; if the agent lands
in a given square, receives this reward. When no attack is supplied and p is deterministic,
the optimal policy is the one that leads the agent along the path highlighted by the blue
line.

A representation of the learned Q-values in this maze is depicted below. It was created by
coloring each square st with the average Q-value over all four actions that can be taken in
that square. Lighter values correspond to higher values, and the deep purple corresponds
with 0 value:

4 Constructing Adversarial Strategies

In order to ultimately create a victim defense, we consider the adversary’s strategy against
an online agent which follows the ϵ-greedy sampling strategy. We do so in the context of
path switches, as the adversary’s goal is to make the reward of a “bad” path appear
higher to the victim than the reward of a “good” path. We are interested in the adversary’s
budget, how much corruption it has to switch two paths, as we can use this to determine if
switching the paths is possible and after how many samples this will occur. First, we analyze
the probability that paths switch in the context of two paths that are sampled equally and
provide a bound for regret, the difference between the reward of the victim’s chosen actions
and the reward of the optimal action in hindsight.
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4.1 Preliminaries

We consider an adversary that has access to all the rewards and transition probabilities in
the MDP. For every path traversal in the victim samples in the stream, the adversary has
probability p of corrupting the path by a maximum magnitude of δ. This style of corruption
suits the incremental nature of the online victim’s learning process.

For an MDP with two paths Pi and Pj , we denote the path lengths as ni and nj respectively.
We denote the actual rewards as R(Pi) and R(Pj) where R(Pi) < R(Pj) and the observed
(and possibly perturbed) rewards as r′i and r′j .

4.2 Disjoint Path MDP

Theorem 4.1. The regret of a completely greedy victim in the two-path adversarial setting
is upper-bounded by

(ni + nj)pδ
2(1− p)

gap

where gap = R(Pj)−R(Pi).

Proof Sketch. We first calculate the expected rewards and variances of each path, and
then use Chebyshev’s Inequality to bound the probability that the paths switch. Using this
probability, we calculate regret.

Proof. By linearity of expectation, E[r′i] = R(Pi)− na · p · δ and E[r′j ] = R(Pj) + nj · p · δ.

We can see that P (r′i ≥ r′j) < P (|r′i − E[r′i]|+ |r′j − E[r′j ]| ≥ gap).

By Chebyshev’s Inequality, P (|r′i − E[r′i]|+ |r′j − E[r′j ]| ≥ gap) ≤ V ar(r′i+r′j)

gap2 .

We can determine that V ar(r′i + r′j) = (ni + nj)pδ
2(1− p) to simplify to

P (|r′i − E[r′i]|+ |r′j − E[r′j ]| ≥ gap) ≤ (ni + nj)pδ
2(1− p)

gap2
.

Thus, the probability that paths switch is bounded as P (r′i ≥ r′j) <
(ni+nj)pδ

2(1−p)
gap2 .

The expected regret of a completely greedy strategy is

P (r′i ≥ r′j)(rj − ri) ≤
V ar(r′i + r′j)

gap2
· gap.

Thus, regret of greedy strategy has an upper bound of

(ni + nj)pδ
2(1− p)

gap
.
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5 Random-Sampling Victim

In this section, we consider a victim following a random-sampling strategy, which samples
each path with equal probability. Intuitively, one might think to corrupt in the same manner
as the previous section, perturbing just the disjoint edges, and thus achieving a similar
budget calculation. However, our method improves on this budget by exploiting the shared
edges of target paths. In addition to the corruption from the disjoint edges, when the
victim traverses other paths, the adversary is able to gain free corruption by perturbing
the edges those paths have in common with the two target paths. This corrupts the edge’s
perceived value, thereby helping to switch the two paths and increasing the budget. Thus,
the adversary may be able to trick the victim into choosing a worse path when paths are
non-disjoint.

5.1 Baseline Attacks

Aside from the adaptive attack, as a baseline, this work considers two primitive attacks, as
a means of comparing them to more sophisticated attacks.

Primitive Attack A. Under the first primitive attack, which we call A, when the victim
traverses path Pi of length ni, the rewards are perturbed by a normal distribution centered
at 0 and truncated between − δ

ni
and δ

ni
(the division is necessary to ensure that the total

perturbation in the sample does not exceed δ as mandated by our problem setting). The
probability density function of this distribution for a mean 0, standard deviation 3, and
bounded between −1 and 1 looks like

Essentially, the idea behind this attack is to introduce noise into the observed reward of the
MDP. It will be empirically demonstrated that in general, this methodology is far from the
adversary’s optimal strategy.

Primitive Attack B. Under the second primitive attack, which we call B, if the reward is
drawn from the optimal path P ∗ of length n∗, then the adversary perturbs it down by δ

n∗
;

conversely, if the reward is drawn from a suboptimal path Pi, then the adversary perturbs
it up by δ

ni
. This strategy is not optimal for the adversary because it blindly assigns equal

perturbation to all edges in a path, rather than singling out the best edge to perturb and
targeting it. It is shown below (and confirmed empirically) that for a random victim with
a warm start phase, neither strategies A nor B are optimal.
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5.2 Adversarial Algorithm for Random-Sampling Victim

Our algorithm outputs the path with lowest possible reward that the adversary may switch
with the optimal path, assuming the victim samples all paths with equal probability. It
calculates the adversary’s budget for each path; then, it returns the path that minimizes
reward while still having sufficient budget to switch with the optimal path. Note that we
assume that the gap between the optimal reward and the second-best reward is large enough
so that when the switch takes place, there is no path in between that remains higher than
the path we are trying to switch.

Algorithm 2 Adversarial Attack: Switching Non-disjoint Paths in Warm Start

input: MDPM
1: P ← P ∗ ▷ Current path to perturb; we will iterate and find a better one
2: for all Pi ∈M∧ Pi ̸= P ∗ do ▷ Iterate only through suboptimal paths
3: bi ← 2 ▷ Corruption from Pi and P ∗ disjoint edges
4: for all Pj ̸∈ {Pi, P

∗} do ▷ Iterate through paths that are not optimal or Pi

5: a∗ ←∞
6: for all e ∈ Pj do ▷ Iterate through edges
7: if (e ∈ P ∗ ⊕ e ∈ Pi) ∧ a(e) < a∗ then
8: a∗ ← a(e) ▷ Calculate budget; a(e) := |{P : e ∈ P}|
9: end if

10: end for
11: bi ← bi +

1
a∗

12: end for
13: if R(Pi) < R(P ) ∧R(P ∗)− bipδ < R(Pi) then
14: P ← Pi ▷ Compare current path to best path found thus far
15: end if
16: end for
17: output P

5.3 Proof of Optimality of Algorithm 2

We begin our proof by reducing the task of showing that this algorithm chooses the path with
lowest reward to the task of showing that this algorithm calculates the budget optimally.
For the sake of contradiction, suppose the algorithm did not pick the path with lowest
reward. This means the adversary could have found a higher budget for some other path
with a lower reward, meaning the adversary did not choose the edges to corrupt optimally.
Therefore, we prove this algorithm picks the set of corrupted edges optimally.

Lemma 1. There exists some edge such that if the adversary focuses all perturbation on
this edge, it will be more optimal than if the adversary distributes its perturbation.

Proof. Suppose that the adversary corrupts the edge e. In order for the adversary to increase
its effective corruption budget, it would have to sometimes corrupt an edge e′ which has a
higher corruption. In this case, corrupting just e′ is more optimal than the weighted sum
of e and e′. Thus, choosing multiple edges to corrupt in a traversal is not optimal, and it is
more favorable to always choose a single edge to corrupt.
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Theorem 5.1. Algorithm 2 picks the set of corrupted edges optimally.

Proof. Suppose, for the sake of contradiction, that there is a set of corrupted edges that is
more optimal.

Each edge in this optimal set that differs from the algorithm’s chosen set is one of two cases:
either it is not on the two paths the adversary aims to swap, or it is. If the edge is not on
the two paths, it does not affect the budget because when corrupted, it does not contribute
at all to switching those two paths. Otherwise, a differing edge indicates that there must
be some corruption replaced in the optimal set as the adversary only corrupts one edge per
path traversed by Lemma 1. However, we now prove that this substitution of edges will not
yield a greater corruption. Fundamentally, this is because the algorithm chooses the edge
on the least number of paths, which is optimal.

If the adversary corrupts an edge that is on h paths, including either the optimal or other
chosen path but not both, it will corrupt this edge p fraction of the N times it is traversed for
a total corruption of p ·N ·δ, and this perturbs the reward of the target path by p·N ·δ

h·N = p·δ
h .

This means that edges that are on a smaller number of paths will contribute a greater
corruption to the budget. As our algorithm picks the edge that is on the least number of
paths, it chooses the edge with the maximum corruption.

Thus, our algorithm is optimal, in that it calculates budget optimally and chooses to swap
the optimal path with the path with lowest possible reward.

6 ϵ-Greedy Victim

We consider the sequence of paths that the victim perceives to be optimal. The adversary’s
goal is to perturb the victim such that the last path in the sequence has as low of a reward
as possible. We consider the phases in the sequence, where each switch to a new optimally
perceived path marks the start of a new phase. Let Ni denote the number of samples in
phase i.

Moreover, our victim begins with a warm start, where it samples each path n times. During
the warm start, the adversary corrupts as according to Algorithm 2.

Corrupting based off of Algorithm 2 after the warm start may be suboptimal due to the
victim’s unequal sampling. In the phase after warm start, much of the previous corruption
on the greedily sampled path will be lost due to the adversary only being able to corrupt
pδ when that path is traversed. We analyze the degradation of the warm start strategy
empirically in section 7 and give an example in section 6, along with an alternative strategy.

6.1 Improving on Random-Sampling Victim Corruption

Intuitively, an ϵ-greedy victim allows the adversary to gain even greater corruption budget
than from the warm start. This is because the adversary can corrupt intermediate value
paths as a middleman to then switch to lower reward paths that would have been unobtain-
able with just the warm start. The adversary can corrupt the edge that this intermediate
path has in common with some target path or with the most optimal path, which results
in a higher corruption budget as the intermediate path is sampled more often. For certain
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MDP structures with bounded reward gaps, multiple path switches are possible, a regime
we aim to parameterize further.

However, it is also important to note that ϵ-greedy sampling causes the effectiveness of
corrupting paths upwards to decrease over time. This is because the adversary is unable to
maintain all the corruption on the path when it is greedily sampled.

6.1.1 Improving on Random-Sampling in a Simple MDP

Let’s consider another MDP with three paths: P1, P2, and P3 where R(P2) < R(P1) <
R(P3). Below is a picture of the MDP. First, we will solve for bounds on gaps of rewards,
N , and x for all MDPs of this structure. Then we will numerically calculate possible N and
x with this specific MDP’s rewards, and demonstrate the path switch.

This MDP has disjoint edges on each path, along with P1 ∩P2. Also, R(P3)−R(P1) < 2pδ
in this example.

Warm Start. The adversary perturbs the disjoint edges of P1, P2, and P3. After the end
of warm start, the victim will perceive the rewards of the paths as:

(P1, P2, P3) = (R(P1) + pδ,R(P2) + pδ,R(P3)− pδ).

After Warm Start. After the warm start, the adversary wants to switch P2 with P3.
Its strategy is to first corrupt edge P1 ∩ P2 upward by pδ for x fraction of samples, then
corrupt the disjoint edge of P1 downward by pδ for 1 − x fraction samples. Whenever the
victim samples P2 or P3, we corrupt the disjoint edges up and down respectively. After all
sampling ends, the rewards are:

P1 is R(P1) +
npδ−(1−x)(1−ϵ)Npδ

n+(1−ϵ)N + x(1−ϵ)Npδ
2n+(1− ϵ

2 )N
,

where the second term comes from warm start corruption on P1’s disjoint edge subtracted
by the downwards corruption after warm start, and the third term is the corruption on
P1 ∩ P2 edge after warm start.

P2 is R(P2) + pδ + x(1−ϵ)Npδ
2n+(1− ϵ

2 )N
,

where the second term is corruption on disjoint edge and the third term is corruption on
P1 ∩ P2.

P3 is R(P3)− pδ.
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Thus we have the following two relations corresponding to the gaps for which this strategy
will work:

R(P1) +
npδ − (1− x)(1− ϵ)Npδ

n+ (1− ϵ)N
+

x(1− ϵ)Npδ

2n+ (1− ϵ
2 )N

≤ R(P2) + pδ +
x(1− ϵ)Npδ

2n+ (1− ϵ
2 )N

,

and

R(P3)− pδ ≤ R(P2) + pδ +
x(1− ϵ)Npδ

2n+ (1− ϵ
2 )N

.

Simplified, this is:

R(P1)−R(P2) ≤
(2− x)(1− ϵ)Npδ

n+ (1− ϵ)N
,

and

R(P3)−R(P2) ≤ 2pδ +
x(1− ϵ)Npδ

2n+ (1− ϵ
2 )N

.

When these conditions are satisfied, the adversary is able to switch P2 with P3, a feat it
would not have been able to do otherwise.

Bound on N and Formula for x. From these relations, we can get a lower bound on
N , and a formula for x. These quantities will be useful in crafting a robust victim defense.
From the second inequality, we get a bound on N :

N ≥ 2n(R(P∗)−R(P2)− 2pδ)

pδx(1− ϵ)− (R(P3)−R(P2)− 2pδ)(1− ϵ
2 )

.

We can solve for the equality case of the first relation, which gives us that

x =
2(1− ϵ)Npδ − (R(P1)−R(P2))(n+ (1− ϵ)N)

(1− ϵ)Npδ
.

For this specific MDP, we can simplify the bound on N derived from the inequality by
accounting for budget/free corruption, since R(P∗)−R(P2) >

5
2pδ. We can bound N by

N ≥ 2n

2x(1− ϵ)− (1− ϵ
2 )

.

Example Calculations. Using the above relations, we can calculate that for this specific
MDP, N = 1500 and x = 0.654 will allow for P2 and P3 to switch. Here, R(P1) = 3,
R(P2) = −2.01, and R(P3) = 8. Let’s set n = 100, pδ = 4, and ϵ = 0.1.

After warm start, the rewards are: (P1, P2, P3) = (3 + 4,−2.01 + 4, 8− 4) = (7, 1.99, 4).

After another 1500 samples, the rewards are:

(P1, P2, P3) = (3− 1.012 + 2.173, 1.99 + 2.173, 4) = (4.161, 4.163, 4).

P2 is now perceived as most optimal by the victim!

13



6.2 Upper Bound on Total Corruption

While the adversary is able to improve upon its warm start corruption in some cases, the
lowest reward path it can switch to depends highly on the amount it can possibly corrupt

during warm start. We get a maximum of (1−ϵ)pδ
1−(1−a)ϵ budget total whenever the victim’s

greedy path is traversed and the edge (on a fraction of the paths) which the greedy path
has in common with P∗ or P̂ . For every other traversal, we will get a maximum of warm
start budget of switching P̂ with P∗.
Thus, we have an upper bound of

maxP̂ warm(P̂ ) + warm(P∗) + (1−ϵ)pδ
1−(1−a)ϵ

on total possible corruption.

6.3 Lower Bound on Ni

In order to construct an ϵ-annealing algorithm, we must parameterize the lengths of phases
Ni. We can use the upper bound of corruption to derive a lower bound on Ni. By the upper
bound, we must have the inequality

R(P∗)−R(Pi) < warm(Pi) + warm(P∗) + ci−1 +
(1− x)(1− ϵ)Nipδ

(1− (1− a)ϵ)(
∑i

j=1 Nj)
.

in order for P∗ and Pi to be switchable, where x is the fraction of the time that the current
greedy path’s shared edge with Pi is corrupted and ci−1 is the amount of previous corruption
from greedy paths. This simplifies to

Ni >
(R(P∗)−R(Pi)− warm(Pi)− ci−1)(1− (1− a)ϵ)(

∑i
j=1 Nj)

(1− x)(1− ϵ)pδ − (1− (1− a)ϵ)(R(P∗)−R(Pi)− warm(Pi))− ci−1
.

6.4 Adversarial Algorithm Against an ϵ-Greedy Victim

We can use the bound in section 6.3 to guide us in selecting the path we aim to ultimately
switch to at the end of training. We seek the path P̂ with lowest possible reward such that

warm(P̂ ) + warm(P∗) + (1− ϵ)pδ

1− (1− a)ϵ
< R(P∗)−R(P̂ ),

where the left hand side is the upper bound on total corruption. Therefore, P̂ the worst
that the adversary can possibly manipulate the victim into choosing.

Simultaneously, the adversary must ensure that the victim does not accidentally switch to
paths with greater reward than P̂ ’s final reward. This is because if these paths are sampled
greedily, it is difficult to recover the downward corruption lost as the perturbations on greedy
paths degrades. Thus, the adversary corrupts these paths sufficiently so that they are not
perceived as optimal.

14



6.4.1 Heuristic Using Stalling

Intuitively, we “save” our corruption for the final switch by not directing corruption in
an attempt to make the greedy paths strictly decreasing in reward. Rather, we focus our
corruption onto P̂ , along with the paths for which it is absolutely necessary to be corrupted.

In particular, we can ignore the order of the greedily perceived paths before the penultimate
switch because after a certain amount of samples, all the top perceived few paths will have
already degraded. Therefore, we corrupt some paths with a lower reward than P̂ ’s final
reward upwards enough to just stall in the meantime. This stalling allows us to effectively
manipulate the total fixed number of samples N so that we can just consider switching
the “important” paths, obtaining the shortest sequence of path switches possible. This is
typically just one penultimate switch.

After running Algorithm 3, the adversary corrupts the victim’s data stream based off of the
edge sets D and U returned.

Algorithm 3 performs better than Algorithm 2 in several key cases, illustrated in the next
section. Currently, we are investigating a proof of optimality.

Algorithm 3 Adversarial Attack Against ϵ-Greedy Victim

input: ϵ,MDPM
1: P ← P ∗ ▷ The final path we switch to
2: D,U ← ∅ ▷ Initialize final edge sets corresponding to corruptions down/up
3: for all P̂ ∈M∧ P̂ ̸= P ∗ do ▷ Choosing P
4: hasDown← true ▷ Some paths need to be corrupted down for P to be reachable
5: DP̂ , UP̂ ← ∅ ▷ Initialize edge sets corresponding to P̂

6: if warm(P̂ ) + (1−ϵ)pδ
1−(1−a)ϵ < R(P∗)−R(P̂ ) then ▷ Budget needed below upper bound

7: continue
8: end if
9: UP̂ ← GetUpwardsCorruptions(M, P̂ , UP̂ , DP̂ , n, N , ϵ) ▷ Corruptions on

low-reward paths
10: DP̂ ← GetDownwardsCorruptions(M, P̂ , DP̂ ) ▷ Corruptions on high-reward paths

11: hasDown ← Reachability(M, P̂ ,DP̂ ) ▷ Check viability of assigned corruptions

12: if hasDown ∧R(P̂ ) < R(P ) then
13: P ← P̂ ,D ← DP̂ , U ← UP̂

14: end if
15: end for
16: return: U , D
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Helper Functions:

Algorithm 4 GetUpwardsCorruptions: Find which edges to corrupt upwards to stall
the victim and gain greater corruption

input: MDPM, optimal path P∗; the path we want to switch to P̂ ; U and D, edge sets to
corrupt up/down; n number of warm start samples; N number of samples after warm start;
ϵ

1: Rf (P̂ )← R(P∗)− warm(P∗) ▷ Calculate final reward of P̂

2: if warm(P̂ ) < R(P∗)−R(P̂ ) then ▷ Find path which shares edge with P̂
3: Let e ∈ P̂ satisfy e = argmaxe ae ▷ on more paths, bigger difference during greedy
4: for all Pe do ▷ paths containing e
5: if R(Pe) + pδ +warm(Pe) > Rf (P̂ ) then

6: Solve for NPe with
(1−ϵ)(warm(Pe)−pδ)(NPe )
((1−ϵ)NPe+ϵ(N−NPe ))

= R(Pe)−Rf (P )

7: U ← U + (e, Pe, N −NPe
) ▷ Start corrupting at sample N −NPe

8: Find Pstall where Pstall = argmaxP R(P ) and R(Pstall) < Rf (P̂ )
9: U ← U + (ed, Pstall, 0) ▷ Corrupt Pstall upwards to stall victim

10: if R(Pe) + pδ > Rf (P̂ ) then
11: U ← U + (e, Pe) ▷ Corrupt Pe’s common edge up
12: NPe

← (R(Pe)−R(P̂ ))((1− ϵ)N + n)− n ▷ Samples to switch Pe and P̂
13: D ← D + (e, Pe, N −NPe

) ▷ Corrupt disjoint edge down to switch to P̂
14: break ▷ Prefer initializing U and D here, there’s no degradation estimate
15: end if
16: end if
17: end for
18: end if
19: if warm(P̂ ) > R(P∗)−R(P̂ ) then ▷ Determine a path to stall with
20: Find Pstall where Pstall = argmaxP R(P ) and R(Pstall) < Rf (P̂ )
21: U ← U + (ed, Pstall, 0) ▷ Corrupt Pstall upwards to stall victim

22: NPe
← (R(P̂ )−R(Pstall))((1−ϵ)N+n)

2pδ − n
2 + (1− ϵ)N2 ▷ samples to switch Pstall and P̂

23: D ← D + (e, Pstall, NPstall
) ▷ Corrupt disjoint edge down to switch to P̂

24: end if
25: return: U , D

16



Algorithm 5 GetDownwardsCorruptions: Find which edges to corrupt downwards to
ensure the victim doesn’t switch to an unintended high-reward path

input: MDP M, optimal path P∗; the path we want to switch to P̂ ; D, the edge set to
corrupt down

1: Rf (P̂ )← R(P∗)− warm(P∗) ▷ Calculate final reward of P̂

2: for all Ṗ ∈M∧R(Ṗ ) > Rf (P̂ ) do ▷ Track edges that need to be corrupted

3: D ← D + (ed, Ṗ ) ▷ add the disjoint edge to the set
4: end for
5: e∗ ←, be ← 0 ▷ Edge to perturb and corresponding value
6: for all P̃ ∈M∧R(P̃ ) < Rf (P̂ )∧ ̸∈ Pp do ▷ We corrupt remaining paths as needed

7: for all Ṗ ∈M∧R(Ṗ ) > Rf (P̂ ) do

8: e← P̃ ∩ Ṗ
9: if 1

ae
> be then ▷ Updating best edge to perturb

10: e∗ ← e, be ← 1
ae

11: end if
12: end for
13: D ← D + (e∗, P̃ )
14: end for
15: return: D

Algorithm 6 Reachability: Determine if the assigned corruptions will ensure that the
victim doesn’t switch to an unintended high-reward path

input: MDP M, optimal path P∗; the path we want to switch to P̂ ; D, the edge set to
corrupt down

1: Rf (P̂ )← R(P∗)− warm(P∗) ▷ Calculate final reward of P̂
2: hasDown← True
3: for all Ṗ ∈M∧R(Ṗ ) > Rf (P̂ ) do
4: b← 0 ▷ Initialize budget
5: for all e ∈ D ∧ e ∈ Ṗ do
6: b← b+ 1

ae
▷ Update budget

7: end for
8: if b < R(Ṗ )−Rf (P ) then ▷ Ensure sufficient budget to corrupt Ṗ downwards
9: hasDown← False

10: end if
11: end for
12: return: hasDown

6.4.2 Examples

In this section, we provide two examples:

In the first, it is possible to switch to the worst path during the warm start period, but
the corruption degrades over time. Thus, it is necessary to corrupt the middle path to be
optimal right after warm start, and then switch to the worst path after.

In the second example, it is possible to switch both to the worst path, as well as a path that
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shares a common edge with it, during the warm start. However, corruption will degrade on
both paths, so it is necessary to first stall the victim.

Consider an MDP with three paths: P1, P2, and P3 where R(P1) < R(P2) < R(P3). Below
is a picture of the MDP.

Let the length of the warm start n = 150 with 50 samples on each path, the ϵ-greedy period
be N = 150, ϵ = 0.2and pδ = 4.

Let’s say that the adversary were to maintain the warm start corruption, perturbing disjoint
edges on P1 and P3 as well as P1 ∩P2. Using the formulas derived in section 6.1, corruption
on P1 ∩ P2 would degrade after around 100 samples in the ϵ-greedy phase and P2 would be
viewed as optimal.

However, the adversary could instead perturb all the disjoint edges during warm start. In
the phase after, it could perturb P1 ∩ P2 whenever the greedy path P2 is sampled. After
around 75 samples, the rewards of P1 and P3 will have switched and we can corrupt P2’s
disjoint edge for another 50 samples for it to be perceived as suboptimal. Thus, we are able
to switch to the worst path with this strategy.

Below is a second example. Let pδ = 4, ϵ = 0.2, n = 120, N = 5000. The rewards are
P1 = 6, P2 = 4, P3 = 1.5, P4 = 2.5, P5 = 0, and P6 = 12.
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If we were to put full warm start corruption on path P3, we would obtain free corruption of
pδ = 4 and budget of 8. P3 would reach a reward of 9.9 and we could switch it with optimal
path P6, however it would degrade as this corruption relies so much on free corruption. If
we tried to switch first from P4 to P3, we would either lose corruption on P4 before being
able to switch to P3, or lose corruption after switching to P3 as N is large. Thus, we can
stall by first switching to path P1, then after a while corrupting A downwards so we can
switch to P4 and then to the desired P3.

7 Experiment

7.1 Preliminary Results

The following experiment2 was conducted in this MDP:

It included three paradigms: whether the adversary was absent, baseline (A & B), or dy-
namic (Algorithm 2); whether the victim was greedy or random during the main learning
phase; and whether there was a warm start. Performance was measured starting in the
post-warm-start phase, testing the learned Q-values with ϵ = 0 after every episode and
pδ = 13.

2Code is made available at https://github.com/Gerbil613/primes-rl-test.
3For the purposes of these experiments, we remove the assumption that the gap is sufficiently large

to prevent a path from remaining in between the optimal path and the path being switched. The code
implementation of Algorithm 2 is modified to account for such cases.
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Clearly, the baseline attacks were hardly effective at tampering with the learning of the
victim, because when there was no warm start, the victim’s learning curve was still able to
learn to achieve the optimal reward of 7. In contrast, the more sophisticated attack was
successful in meaningfully perturbing the victim, despite being subject to the same pδ = 1
constraint as the baseline adversaries. Moreover, it is apparent that when there is no warm
start under the dynamic adversary4, the ϵ-greedy victim maintains higher performance than
its random counterpart.

4One noteworthy feature of this graph is the sharp spike in performance in the beginning, if there is no
warm start. This spike can be attributed to the worst path in the MDP, of reward 3. When the victim
quickly learns to avoid this path, it shifts its strategy from sampling it 1

4
of the time to sampling it much

less frequently, owing to a large short-term increase in the victim’s reward.
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7.2 Random MDP Generation and General Analysis of their Struc-
ture

This work considers the following algorithm, which generates a random5 MDP given a set of
parameters. Such a procedure is quite useful in evaluating the efficacy of MDP algorithms
in general rather than focusing on one MDP, as before. Note that, because the class of
MDPs which this work considers is structurally equivalent to an acyclic directed graph, we
can guarantee acyclicity by assigning an integer to each state and only allowing transition
between a lower-numbered state to a higher-numbered one:

Algorithm 7 Random MDP Generation

input: ns, pe ▷ input number of states in MDP and likelihood of edge existing between
two given states

1: S ← {0, 1, . . . , ns}
2: while True do ▷ Keep on iterating until fully connected MDP is attained
3: A ← {}
4: for all s1 in S do
5: a← 0 ▷ Keep track of amount of actions in s1
6: for all s2 ∈ S such that s2 > s1 do ▷ Iterate through pairs of states
7: if random(0, 1) < pe then ▷ Do with probability pe
8: R(s1, s2)← random(−1, 1) ▷ Expected edge reward is 0, so that longer

paths do not have higher expected rewards
9: P(s1, a, s2)← 1 ▷ Draw edge between s1 and s2

10: a← a+ 1 ▷ There is now one more possible action in s1
11: end if
12: end for
13: if a > |{A}| then ▷ We use a to ensure that our action space contains the right

number of actions
14: A ← {0, 1, . . . , a}
15: end if
16: end for
17: if ∀s ∈ S : (∃P : s ∈ P ) ∧ |{P : P ∈M}| > 1 then ▷ Verify that MDP is fully

connected and not trivial; otherwise, reject and start over
18: return M(S,A,R,P)
19: end if
20: end while

First, we use this generation algorithm to verify that in the general case, for a victim with a
random warm start phase, Algorithm 2 achieves the greatest difference between the optimal
reward and the victim’s returned reward:

5We ignore trivial MDPs in which the gap between the optimal path and all other paths is so large that
the adversary cannot corrupt the victim into switching to any path at all. Thus, we also ignore MDPs that
have only one path.
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Attack A shows effectively no difference at all between optimal reward and returned reward.
This is because Attack A randomly assigns noise to the observations of MDPs, so in the
general case, averaged over many iterations, it imposes no meaningful corruption.

However, the fact that Algorithm 2 experiences a general trend of decreasing the difference
between optimal and returned reward is of great interest. It demonstrates that for denser and
denser MDPs (that is, MDPs with more chances at free corruption), the ability to maintain
warm-start corruption wanes, as evidenced by the returned reward becoming closer to the
optimal reward. This is due to the fact that when the victim enters the ϵ-greedy phase, it
focuses more on a single path to exploit, so as it traverses other paths less and less, less
free corruption may be derived from them. Thus, Algorithm 2’s overall ability to maintain
corruption through an ϵ-greedy phase wanes for denser MDPs. Additionally, it is clear that
Algorithm 2 is much more optimal than either primitive baseline attacks A or B, because it
still manages to sustain a higher discrepancy between optimal reward and victim-returned
reward than either baseline.

Next, we establish a relationship between the depth of an MDP (which we compute as the
average number of states in each path) and its density (which we measure by pe):
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Indeed, denser MDPs are likely to have longer (deeper) paths. This is because a denser
MDP has more edges, and is therefore more likely to possess longer, consecutive chains of
edges; i.e. longer paths.

Moreover, below is a graph detailing the number of greedy episodes for which warm start
corruption can be maintained. Note that for some randomly generated MDPs, the warm
start corruption can be maintained perpetually since it is sufficiently unreliant on free cor-
ruption. In these cases, we manually set the number of episodes in which corruption is
perpetually maintained to be a very high number (1000), since the mathematically accurate
data point would be infinite.

Evidently, for denser MDPs, the number of episodes for which warm start corruption can be
maintained drops. This reinforces the notion from previous data and reasoning that denser
MDPs have more free corruption and therefore struggle to hold onto all of it against an
ϵ-greedy victim.
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Below, the “amount” of free corruption allowed to the adversary is parameterized along the
x-axis. Specifically, when the adversary is determining the path to perturb in Algorithm 2,
with a probability pf , it is allowed to take into consideration budget present on paths that
are neither the optimal one nor the one being switched. In this way, pf = 1 corresponds to
the usual Algorithm 2, whereas pf = 0 corresponds to a situation in which the adversary
may only perturb edges on the optimal path and the path being switched. The number
of episodes for which warm start corruption is preserved in a subsequent ϵ-greedy stage is
depicted below:

In short, in an intuitive sense, the more the adversary is permitted to make use of free
corruption, the less easily it can hold on to corruption. This, as before, is because free
corruption relies on the adversary consistently sampling a wide variety of paths. But under ϵ-
greedy behavior, it focuses on just one path, losing all the free corruption, so the adversary’s
strategy falls apart.

8 Conclusion

8.1 Future Work

The main task ahead is to investigate the optimality of Algorithm 3 and to test it empirically.
Moreover, we aim to improve upon this algorithm to balance correctness with computational
complexity.

One approach to achieve complete optimality may be establishing a recursive strategy to
determine the sequence of path switches. With this sequence, the adversary could construct
edge sets to corrupt up and down accordingly. However, the computational complexity
required for the adversary to deploy this strategy is most likely exponential. Thus, a future
direction may be approximating this recursive strategy to make it more practical.

Once an optimal adversarial strategy is established, we can analyze the ϵ-greedy victim’s
regret for varying amounts of corruption levels. From here, we can construct an ϵ-annealing
algorithm that is robust to the adversarial strategy.
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Moreover, on the experimental side, it would be interesting to gain even more insight about
how the general structure of an MDP reacts with the strategy of the adversary (e.g. how
much it relies on free corruption) to affect the performance of the victim and adversary.
For instance, when fixing the number of samples during which the adversary can maintain
warm start corruption, what is the relationship between the density of the MDP and the
distance between optimal reward and post-greedy-phase returned reward?
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