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Maybe they can help resolve long-standing mathematical
questions!
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A Few Problems

The Riemann Hypothesis (1859)

The Riemann zeta function has zeros only at negative even
integers and complex numbers with real part 1

2 .

Goldbach’s conjecture (1742)

Every even integer greater than two can be expressed as the
sum of two primes.
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A Problem in Particular

Goldbach’s conjecture (1742)

Every even integer greater than two can be expressed as the
sum of two primes.

Example

10 = 3 + 7
148 = 101 + 47

4390 = 1091 + 3299
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A possible solution to Goldbach’s conjecture?

Tadaa!!

Except it runs for a very long time...
How do we know if the program will stop running?
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The Busy Beaver Problem

The busy beaver problem was introduced by
mathematician Tibor Radó in 1962.

Objective: find the “busiest” algorithm of a given size.

Using this bound, we can figure out whether programs
loop indefinitely!

Except we can’t compute these upper bounds :(
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What is this?
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It’s the description of a Turing machine!
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Turing Machines

Turing machines are a theoretical model of computation that
behave similarly to modern computers.

Turing machine schematic
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Languages

Turing machines recognize whether its input belongs in a
language.

Definition

A language is a set of strings that usually follow a certain rule.

Example

L = {w |w ∈ {0, 1}}
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Turing Machines Cont.

Turing machines are finite state machines with infinite
memory (the tape).

Most importantly, the Church-Turing Thesis states that all
algorithms map to a corresponding Turing machine
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Turing Machine Example

State diagram of Turing machine
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Turing Machine Example

State diagram for a TM that recognizes A = {02n |n ≥ 0}
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Decidability

Definition

Language A is decidable if there exists some Turing machine M
such that

M accepts all s ∈ A and rejects all s /∈ A.

Corollary

If a language is undecidable, there is no algorithm that decides
whether s ∈ A.
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Two Undecidable Languages

The first one:

ATM = {⟨M,w⟩|M is a TM and M accepts w}

The second:

HALTTM = {⟨M,w⟩|M is a TM and M halts on input w}
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Proving Undecidability Through Diagonalization

Recall: ATM = {⟨M,w⟩|M is a TM and M accepts w}

Theorem

The language ATM is undecidable.

Proof.

Assume to the contary that TM H decides ATM .

Create TM D as follows:

It runs H on ⟨M, ⟨M⟩⟩.
If H accepts, reject.
If H rejects, accept.
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Proving Undecidability Through Diagonalization

To visualize H (a decider for ATM)...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ... ⟨D⟩
M1 accept reject accept ... accept

M2 reject reject reject ... reject

M3 accept accept accept ... accept

... ... ... ... ... ...

D reject accept reject ... accept
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Recall:

HALTTM = {⟨M,w⟩|M is a TM and M halts on input w}.

Let’s take advantage of its similarity with ATM .
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Reducibility

Example

Is it possible for me to go to the beach tomorrow?

Reduces to: Do I have a ride?
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Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:
It runs S on ⟨M,w⟩.
If S rejects, reject.
If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.
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The Busy Beaver Game

To reiterate: the busy beaver problem

Find the maximum number of computations a halting
algorithm with a given size can perform.

But more specifically: the busy beaver problem

Find the maximum the number of computations a halting
algorithm Turing machine with a given size number of
states can perform.
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The Busy Beaver Game cont.

Our metric for number of computations is the number of state
shifts a Turing machine undergoes.

Definition

BB(n) := the maximum number of shifts for a Turing machine
with n non-halt states.
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Example: BB(2) = 6
Modification: this Turing machine has an all-encompassing halt state.
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Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.
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Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.
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Why do Busy Beaver numbers matter?

Theorem (Matiyasevich, O’Rear 2016)

There is a 744-state Turing machine that halts if and only if
the Riemann Hypothesis is false.

Theorem (Anonymous GitHub user 2015)

There is a 27-state Turing machine that halts if and only if
Goldbach’s conjecture is false.
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Why do Busy Beaver numbers matter?

Theorem (Matiyasevich, O’Rear 2016)

There is a 744-state Turing machine that halts if and only if
the Riemann Hypothesis is false.

Theorem (Anonymous GitHub user 2015)

There is a 27-state Turing machine that halts if and only if
Goldbach’s conjecture is false.
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