
The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

The Busy Beaver Problem
Esther Fu and Sarah Pan
(Mentor: Alexandra Hoey)

PRIMES Circle

MIT

May 21, 2022



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Computers are great!

Why do we love computers?

Maybe they can help resolve long-standing mathematical
questions!



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Computers are great!

Why do we love computers?

Maybe they can help resolve long-standing mathematical
questions!



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A Few Problems

The Riemann Hypothesis (1859)

The Riemann zeta function has zeros only at negative even
integers and complex numbers with real part 1

2 .

Goldbach’s conjecture (1742)

Every even integer greater than two can be expressed as the
sum of two primes.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A Few Problems

The Riemann Hypothesis (1859)

The Riemann zeta function has zeros only at negative even
integers and complex numbers with real part 1

2 .

Goldbach’s conjecture (1742)

Every even integer greater than two can be expressed as the
sum of two primes.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A Problem in Particular

Goldbach’s conjecture (1742)

Every even integer greater than two can be expressed as the
sum of two primes.

Example

10 = 3 + 7
148 = 101 + 47

4390 = 1091 + 3299



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A Problem in Particular

Goldbach’s conjecture (1742)

Every even integer greater than two can be expressed as the
sum of two primes.

Example

10 = 3 + 7

148 = 101 + 47
4390 = 1091 + 3299



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A Problem in Particular

Goldbach’s conjecture (1742)

Every even integer greater than two can be expressed as the
sum of two primes.

Example

10 = 3 + 7
148 = 101 + 47

4390 = 1091 + 3299



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A Problem in Particular

Goldbach’s conjecture (1742)

Every even integer greater than two can be expressed as the
sum of two primes.

Example

10 = 3 + 7
148 = 101 + 47

4390 = 1091 + 3299



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A possible solution to Goldbach’s conjecture?

Tadaa!!

Except it runs for a very long time...
How do we know if the program will stop running?



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A possible solution to Goldbach’s conjecture?

Tadaa!!

Except it runs for a very long time...

How do we know if the program will stop running?



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

A possible solution to Goldbach’s conjecture?

Tadaa!!

Except it runs for a very long time...
How do we know if the program will stop running?



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

The Busy Beaver Problem

The busy beaver problem was introduced by
mathematician Tibor Radó in 1962.

Objective: find the “busiest” algorithm of a given size.

Using this bound, we can figure out whether programs
loop indefinitely!

Except we can’t compute these upper bounds :(



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

The Busy Beaver Problem

The busy beaver problem was introduced by
mathematician Tibor Radó in 1962.

Objective: find the “busiest” algorithm of a given size.

Using this bound, we can figure out whether programs
loop indefinitely!

Except we can’t compute these upper bounds :(



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

The Busy Beaver Problem

The busy beaver problem was introduced by
mathematician Tibor Radó in 1962.

Objective: find the “busiest” algorithm of a given size.

Using this bound, we can figure out whether programs
loop indefinitely!

Except we can’t compute these upper bounds :(



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

The Busy Beaver Problem

The busy beaver problem was introduced by
mathematician Tibor Radó in 1962.

Objective: find the “busiest” algorithm of a given size.

Using this bound, we can figure out whether programs
loop indefinitely!

Except we can’t compute these upper bounds :(



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Table of Contents

1 Turing Machines

2 Decidability

3 Busy Beaver Problem



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Goldbach Algorithm

Recall:

What is this?



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Goldbach Algorithm

Recall:

What is this?



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Goldbach Algorithm

Answer

It’s the description of a Turing machine!



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Goldbach Algorithm

Answer

It’s the description of a Turing machine!



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Turing Machines

Turing machines are a theoretical model of computation that
behave similarly to modern computers.

Turing machine schematic



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Languages

Turing machines recognize whether its input belongs in a
language.

Definition

A language is a set of strings that usually follow a certain rule.

Example

L = {w |w ∈ {0, 1}}



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Languages

Turing machines recognize whether its input belongs in a
language.

Definition

A language is a set of strings that usually follow a certain rule.

Example

L = {w |w ∈ {0, 1}}



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Languages

Turing machines recognize whether its input belongs in a
language.

Definition

A language is a set of strings that usually follow a certain rule.

Example

L = {w |w ∈ {0, 1}}



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Turing Machines Cont.

Turing machines are finite state machines with infinite
memory (the tape).

Most importantly, the Church-Turing Thesis states that all
algorithms map to a corresponding Turing machine



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Turing Machines Cont.

Turing machines are finite state machines with infinite
memory (the tape).

Most importantly, the Church-Turing Thesis states that all
algorithms map to a corresponding Turing machine



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Turing Machine Example

State diagram of Turing machine



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Turing Machine Example

State diagram for a TM that recognizes A = {02n |n ≥ 0}



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Decidability

Definition

Language A is decidable if there exists some Turing machine M
such that

M accepts all s ∈ A and rejects all s /∈ A.

Corollary

If a language is undecidable, there is no algorithm that decides
whether s ∈ A.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Decidability

Definition

Language A is decidable if there exists some Turing machine M
such that

M accepts all s ∈ A and rejects all s /∈ A.

Corollary

If a language is undecidable, there is no algorithm that decides
whether s ∈ A.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Two Undecidable Languages

The first one:

ATM = {⟨M,w⟩|M is a TM and M accepts w}

The second:

HALTTM = {⟨M,w⟩|M is a TM and M halts on input w}



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Two Undecidable Languages

The first one:

ATM = {⟨M,w⟩|M is a TM and M accepts w}

The second:

HALTTM = {⟨M,w⟩|M is a TM and M halts on input w}



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Two Undecidable Languages

The first one:

ATM = {⟨M,w⟩|M is a TM and M accepts w}

The second:

HALTTM = {⟨M,w⟩|M is a TM and M halts on input w}



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

Recall: ATM = {⟨M,w⟩|M is a TM and M accepts w}

Theorem

The language ATM is undecidable.

Proof.

Assume to the contary that TM H decides ATM .

Create TM D as follows:

It runs H on ⟨M, ⟨M⟩⟩.
If H accepts, reject.
If H rejects, accept.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

Recall: ATM = {⟨M,w⟩|M is a TM and M accepts w}

Theorem

The language ATM is undecidable.

Proof.

Assume to the contary that TM H decides ATM .

Create TM D as follows:

It runs H on ⟨M, ⟨M⟩⟩.
If H accepts, reject.
If H rejects, accept.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

Recall: ATM = {⟨M,w⟩|M is a TM and M accepts w}

Theorem

The language ATM is undecidable.

Proof.

Assume to the contary that TM H decides ATM .

Create TM D as follows:

It runs H on ⟨M, ⟨M⟩⟩.

If H accepts, reject.
If H rejects, accept.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

Recall: ATM = {⟨M,w⟩|M is a TM and M accepts w}

Theorem

The language ATM is undecidable.

Proof.

Assume to the contary that TM H decides ATM .

Create TM D as follows:

It runs H on ⟨M, ⟨M⟩⟩.
If H accepts, reject.

If H rejects, accept.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

Recall: ATM = {⟨M,w⟩|M is a TM and M accepts w}

Theorem

The language ATM is undecidable.

Proof.

Assume to the contary that TM H decides ATM .

Create TM D as follows:

It runs H on ⟨M, ⟨M⟩⟩.
If H accepts, reject.
If H rejects, accept.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

To visualize H (a decider for ATM)...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ... ⟨D⟩
M1 accept reject accept ... accept

M2 reject reject reject ... reject

M3 accept accept accept ... accept

... ... ... ... ... ...

D reject accept reject ... accept



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

To visualize H (a decider for ATM)...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ... ⟨D⟩
M1 accept reject accept ... accept

M2 reject reject reject ... reject

M3 accept accept accept ... accept

... ... ... ... ... ...

D reject accept reject ... accept



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

To visualize H (a decider for ATM)...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ... ⟨D⟩
M1 accept reject accept ... accept

M2 reject reject reject ... reject

M3 accept accept accept ... accept

... ... ... ... ... ...

D reject accept reject ... accept ?

Turing machine D accepts ⟨D⟩ if and only if D rejects ⟨D⟩.
There is no such TM that decides ATM .



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

To visualize H (a decider for ATM)...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ... ⟨D⟩
M1 accept reject accept ... accept

M2 reject reject reject ... reject

M3 accept accept accept ... accept

... ... ... ... ... ...

D reject accept reject ... accept ?

Turing machine D accepts ⟨D⟩ if and only if D rejects ⟨D⟩.

There is no such TM that decides ATM .



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Proving Undecidability Through Diagonalization

To visualize H (a decider for ATM)...

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ... ⟨D⟩
M1 accept reject accept ... accept

M2 reject reject reject ... reject

M3 accept accept accept ... accept

... ... ... ... ... ...

D reject accept reject ... accept ?

Turing machine D accepts ⟨D⟩ if and only if D rejects ⟨D⟩.
There is no such TM that decides ATM .



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

HALTTM

Recall:

HALTTM = {⟨M,w⟩|M is a TM and M halts on input w}.

Let’s take advantage of its similarity with ATM .



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

HALTTM

Recall:

HALTTM = {⟨M,w⟩|M is a TM and M halts on input w}.

Let’s take advantage of its similarity with ATM .



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducibility

Example

Is it possible for me to go to the beach tomorrow?

Reduces to: Do I have a ride?



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducibility

Example

Is it possible for me to go to the beach tomorrow?
Reduces to: Do I have a ride?



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:
It runs S on ⟨M,w⟩.
If S rejects, reject.
If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:
It runs S on ⟨M,w⟩.
If S rejects, reject.
If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:
It runs S on ⟨M,w⟩.
If S rejects, reject.
If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:

It runs S on ⟨M,w⟩.
If S rejects, reject.
If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:
It runs S on ⟨M,w⟩.

If S rejects, reject.
If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:
It runs S on ⟨M,w⟩.
If S rejects, reject.

If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:
It runs S on ⟨M,w⟩.
If S rejects, reject.
If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Reducing from ATM to HALTTM

Recall:
HALTTM = {⟨M,w⟩|M is a TM and M halts on input w},
ATM = {⟨M,w⟩|M is a TM and M accepts w}.

Theorem

The language HALTTM is undecidable.

Proof. Assume to the contrary that TM S decides HALTTM .

Create TM H that takes in ⟨M,w⟩ as follows:
It runs S on ⟨M,w⟩.
If S rejects, reject.
If S accepts, run M on w . Do what M does.

Because HALTTM reduces to ATM , it is also undecidable.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

The Busy Beaver Game

To reiterate: the busy beaver problem

Find the maximum number of computations a halting
algorithm with a given size can perform.

But more specifically: the busy beaver problem

Find the maximum the number of computations a halting
algorithm Turing machine with a given size number of
states can perform.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

The Busy Beaver Game

To reiterate: the busy beaver problem

Find the maximum number of computations a halting
algorithm with a given size can perform.

But more specifically: the busy beaver problem

Find the maximum the number of computations a halting
algorithm Turing machine with a given size number of
states can perform.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

The Busy Beaver Game cont.

Our metric for number of computations is the number of state
shifts a Turing machine undergoes.

Definition

BB(n) := the maximum number of shifts for a Turing machine
with n non-halt states.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Example: BB(2) = 6
Modification: this Turing machine has an all-encompassing halt state.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Example: BB(2) = 6
Modification: this Turing machine has an all-encompassing halt state.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Example: BB(2) = 6
Modification: this Turing machine has an all-encompassing halt state.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Busy Beaver Numbers

A few busy beaver numbers:

BB(1) = 1

BB(2) = 6

BB(3) = 21

BB(4) = 107

BB(5)
?
= 47 176 870

BB(6) ≥ 7.4× 1036534

BB(7) ≥ 1010
1010

18705353

An exaFLOPS computer system can perform ∼ 1018

floating-point operations per second.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Why do Busy Beaver numbers matter?

Theorem (Matiyasevich, O’Rear 2016)

There is a 744-state Turing machine that halts if and only if
the Riemann Hypothesis is false.

Theorem (Anonymous GitHub user 2015)

There is a 27-state Turing machine that halts if and only if
Goldbach’s conjecture is false.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Why do Busy Beaver numbers matter?

Theorem (Matiyasevich, O’Rear 2016)

There is a 744-state Turing machine that halts if and only if
the Riemann Hypothesis is false.

Theorem (Anonymous GitHub user 2015)

There is a 27-state Turing machine that halts if and only if
Goldbach’s conjecture is false.



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

Acknowledgements

First and foremost, we would like to thank to our phenomenal,
cool, intelligent mentor Alexandra!

Thanks to the amazing Primes Circle coordinators Marisa and
Mary!

Thanks to Sarah’s computer science teacher, Tom, Michael
Sipser for writing such an informative book, and Scott

Aaronson for being a g.
And thank you all for coming to our presentation!



The Busy
Beaver
Problem

PRIMES
Circle

Turing
Machines

Decidability

Busy Beaver
Problem

References

Aaronson, Scott. (2020). The Busy Beaver Frontier
https://www.scottaaronson.com/papers/bb.pdf

Kun, Jeremy. (2012). Busy Beavers, and Quest for Big
Numbers
https://jeremykun.com/2012/02/08/

busy-beavers-and-the-quest-for-big-numbers/

Mullins, Robert. (2012). What is a Turing machine?
[illustration]
https://www.cl.cam.ac.uk/projects/raspberrypi/

tutorials/turing-machine/one.html

Sipser, M. (2013). Introduction to the Theory of
Computation (3rd ed.). Cengage Learning.

https://www.scottaaronson.com/papers/bb.pdf
https://jeremykun.com/2012/02/08/busy-beavers-and-the-quest-for-big-numbers/
https://jeremykun.com/2012/02/08/busy-beavers-and-the-quest-for-big-numbers/
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/turing-machine/one.html
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/turing-machine/one.html

	Turing Machines
	Decidability
	Busy Beaver Problem

