
Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

NP-Completeness

Jessica Guo and Audrey Wei
Mentor: Kerri Lu

MIT PRIMES Circle

May 27, 2022

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Introduction

§ Time complexity in computational complexity theory:
measures running time of algorithms

§ NP-complete problems: hardest problems that can be verified
quickly

§ P versus NP problem: can any problem whose solution can be
verified in polynomial time also be decided in polynomial time?

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Turing Machines

A Turing machine (TM) is an idealized computer used to simulate
an algorithm.

Turing Machine

finite control

head

tape
a b a \ \ . . .

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Turing Machines

A Turing machine (TM) is an idealized computer used to simulate
an algorithm.

Turing Machine

finite control

head

tape
a b a \ \ . . .

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Turing Machines

A Turing machine halts when it enters an "accept" or "reject"
state. If the TM does not halt, it will loop infinitely instead.

The language a TM recognizes is the set of input strings the TM
accepts.

A TM decides a language if it recognizes the language and the TM
always halts.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Turing Machines

Example

We describe a Turing machine M that recognizes
A = t0k1k|k ě 0u as follows:

M = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a

1.
2. Repeat step 3 if both 0s and 1s remain on the tape.
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If 0s still remain after all the 1s have been crossed off or if 1s

still remain after all of the 0s are crossed off, reject.
Otherwise, if no 0s or 1s remain on the tape, accept."

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Time Complexity

Definition of Running Time

Suppose that a halting deterministic TM uses at most f(n) steps
on any input of length n. We call f(n) the running time of our TM.

Example

§ Step 1: M scans the tape: n steps, the head moves back to the left
end: n steps. Total: 2n or O(n) steps.

§ Step 2 and 3: M scans the tape: n steps, at most n/2 times (M
crosses off 2 symbols each scan). Total: (n/2)O(n) = O(n2) steps.

§ Step 4: M scans the tape: n or O(n) steps.
Total running time of M is O(n) +O(n2) +O(n) = O(n2).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Time Complexity

Definition of Running Time

Suppose that a halting deterministic TM uses at most f(n) steps
on any input of length n. We call f(n) the running time of our TM.

Example

§ Step 1: M scans the tape: n steps, the head moves back to the left
end: n steps. Total: 2n or O(n) steps.

§ Step 2 and 3: M scans the tape: n steps, at most n/2 times (M
crosses off 2 symbols each scan). Total: (n/2)O(n) = O(n2) steps.

§ Step 4: M scans the tape: n or O(n) steps.
Total running time of M is O(n) +O(n2) +O(n) = O(n2).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Polynomial Time

Definition of TIME
Let t(n) be a function which takes in natural numbers and outputs
nonnegative real numbers. The time complexity class TIME(t(n))
is the collection of languages that are decidable by an O(t(n)) TM.

Definition of P
P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. The mathematical
notation of P is

P =
ď

k

TIME(nk).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Polynomial Time

Definition of TIME
Let t(n) be a function which takes in natural numbers and outputs
nonnegative real numbers. The time complexity class TIME(t(n))
is the collection of languages that are decidable by an O(t(n)) TM.

Definition of P
P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. The mathematical
notation of P is

P =
ď

k

TIME(nk).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Polynomial Time

Example: PATH P P

PATH =
{xG, s, ty |G is a directed graph with a directed path from s to t}.
M = “On input xG, s, ty where G is a directed graph with nodes s

and t:
1. Place a mark on node s.
2. Repeat the next step until no additional nodes are marked:
3. Scan all of the edges of G. If an edge (x,y) where x is a

marked node and y is an unmarked node, mark node y.
4. If t is marked, accept. Otherwise reject."

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Non-Deterministic Polynomial Time
P=NP problem still unsolved.

Polynomial Verifiablility

A verifier for a language A is an algorithm N, where

A = tw|N accepts xw, cy for some string cu.

A language A is a polynomially verifiable if it has a polynomial time
verifier.

Nondeterministic Turing Machine

A nondeterministic TM (NTM) has the additional ability of "guessing,"
such that there are multiple possibilities for the next configuration on
different "branches" of the machine’s computation. A NTM accepts iff at
least one of its branches accepts.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Non-Deterministic Polynomial Time
P=NP problem still unsolved.

Polynomial Verifiablility

A verifier for a language A is an algorithm N, where

A = tw|N accepts xw, cy for some string cu.

A language A is a polynomially verifiable if it has a polynomial time
verifier.

Nondeterministic Turing Machine

A nondeterministic TM (NTM) has the additional ability of "guessing,"
such that there are multiple possibilities for the next configuration on
different "branches" of the machine’s computation. A NTM accepts iff at
least one of its branches accepts.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Non-Deterministic Polynomial Time
P=NP problem still unsolved.

Polynomial Verifiablility

A verifier for a language A is an algorithm N, where

A = tw|N accepts xw, cy for some string cu.

A language A is a polynomially verifiable if it has a polynomial time
verifier.

Nondeterministic Turing Machine

A nondeterministic TM (NTM) has the additional ability of "guessing,"
such that there are multiple possibilities for the next configuration on
different "branches" of the machine’s computation. A NTM accepts iff at
least one of its branches accepts.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Non-Deterministic Polynomial Time

Definition of NTIME
NTIME(t(n)) = {L|L is a language decided by an O(t(n)) time
nondeterministic TM}.

Definition of NP
NP is the class of languages decided by polynomial time NTMs.
The mathematical notation of NP is

NP =
ď

k

NTIME(nk).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Non-Deterministic Polynomial Time

Definition of NTIME
NTIME(t(n)) = {L|L is a language decided by an O(t(n)) time
nondeterministic TM}.

Definition of NP
NP is the class of languages decided by polynomial time NTMs.
The mathematical notation of NP is

NP =
ď

k

NTIME(nk).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Non-Deterministic Polynomial Time

Theorem
A language is in NP iff it is polynomially verifiable.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Example SAT P NP

Definition of Boolean Formula and Satisfiability

A Boolean formula ϕ is an expression of Boolean variables (1s and 0s)
manipulated by Boolean operations AND(^), OR(_), and NOT(␣). ϕ
is satisfiable if ϕ evaluates to 1 for some assignment of variables.

Example

Let ϕ = x^ (y_ z). The assignment x = 1,y = 1, z = 1 makes ϕ
evaluate to 1, so ϕ is satisfiable.

SAT (satisfiability problem) tests if ϕ is satisfiable.

SAT = txϕy |ϕ is a satisfiable Boolean formulau.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Example SAT P NP

Definition of Boolean Formula and Satisfiability

A Boolean formula ϕ is an expression of Boolean variables (1s and 0s)
manipulated by Boolean operations AND(^), OR(_), and NOT(␣). ϕ
is satisfiable if ϕ evaluates to 1 for some assignment of variables.

Example

Let ϕ = x^ (y_ z). The assignment x = 1,y = 1, z = 1 makes ϕ
evaluate to 1, so ϕ is satisfiable.

SAT (satisfiability problem) tests if ϕ is satisfiable.

SAT = txϕy |ϕ is a satisfiable Boolean formulau.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Example SAT P NP

Definition of Boolean Formula and Satisfiability

A Boolean formula ϕ is an expression of Boolean variables (1s and 0s)
manipulated by Boolean operations AND(^), OR(_), and NOT(␣). ϕ
is satisfiable if ϕ evaluates to 1 for some assignment of variables.

Example

Let ϕ = x^ (y_ z). The assignment x = 1,y = 1, z = 1 makes ϕ
evaluate to 1, so ϕ is satisfiable.

SAT (satisfiability problem) tests if ϕ is satisfiable.

SAT = txϕy |ϕ is a satisfiable Boolean formulau.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Example SAT P NP

SAT is in NP because given a satisfying assignment (which is the
certificate), a verifier plugs it into ϕ and checks if it satisfies ϕ.

A NTM can also guess an assignment to the boolean formula and
accept if the assignment satisfies the formula.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

NP-Completeness
NP-complete problems: problems in NP whose complexity is linked
to complexity of all problems in NP.

Definition of Polynomial Time Reducible

Language A is polynomial time reducible to language L (A ďp L) if there
exists a polynomial time computable function f such that for any input w,

w P Aô f(w) P L.

Definition of NP-complete

Language L is NP-complete if

1. L P NP,

2. for every A P NP, A ďp L.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

NP-Completeness
NP-complete problems: problems in NP whose complexity is linked
to complexity of all problems in NP.

Definition of Polynomial Time Reducible

Language A is polynomial time reducible to language L (A ďp L) if there
exists a polynomial time computable function f such that for any input w,

w P Aô f(w) P L.

Definition of NP-complete

Language L is NP-complete if

1. L P NP,

2. for every A P NP, A ďp L.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

NP-Completeness
NP-complete problems: problems in NP whose complexity is linked
to complexity of all problems in NP.

Definition of Polynomial Time Reducible

Language A is polynomial time reducible to language L (A ďp L) if there
exists a polynomial time computable function f such that for any input w,

w P Aô f(w) P L.

Definition of NP-complete

Language L is NP-complete if

1. L P NP,

2. for every A P NP, A ďp L.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

NP-Completeness

Cook-Levin Theorem
The Cook-Levin Theorem states that SAT is NP-complete.

To prove some language L is NP-complete, we show L P NP and
A ďp L where A is known to be NP-complete.

§ By proving that SAT is NP-complete, we can use SAT as our
language A to solve other NP-complete problems.

§ Examples:
§ HAMPATH: determines whether in a directed graph G, there

is a directed path from node s to node t that goes through
each node exactly once.

§ CLIQUE: determines whether an undirected graph G contains
a k-clique (every two nodes are connected in subgraph of k
nodes).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

NP-Completeness

Cook-Levin Theorem
The Cook-Levin Theorem states that SAT is NP-complete.

To prove some language L is NP-complete, we show L P NP and
A ďp L where A is known to be NP-complete.

§ By proving that SAT is NP-complete, we can use SAT as our
language A to solve other NP-complete problems.

§ Examples:
§ HAMPATH: determines whether in a directed graph G, there

is a directed path from node s to node t that goes through
each node exactly once.

§ CLIQUE: determines whether an undirected graph G contains
a k-clique (every two nodes are connected in subgraph of k
nodes).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

NP-Completeness

Cook-Levin Theorem
The Cook-Levin Theorem states that SAT is NP-complete.

To prove some language L is NP-complete, we show L P NP and
A ďp L where A is known to be NP-complete.

§ By proving that SAT is NP-complete, we can use SAT as our
language A to solve other NP-complete problems.

§ Examples:
§ HAMPATH: determines whether in a directed graph G, there

is a directed path from node s to node t that goes through
each node exactly once.

§ CLIQUE: determines whether an undirected graph G contains
a k-clique (every two nodes are connected in subgraph of k
nodes).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

NP-Completeness

Corollary

SAT P P if and only if P = NP.

Finding any algorithm in P that solves an NP-complete problem
(like SAT) would mean all problems in NP can be solved in P,
which would prove P = NP.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

Acknowledgements

We would like to thank our mentor, Kerri Lu, and the PRIMES
Circle program coordinators, Marisa Gaetz and Mary Stelow, for
their time, support, and guidance.

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness



Introduction Time Complexity Polynomial Time Non-Deterministic Polynomial Time NP-Completeness

References

[1] Sisper, M. (2013). Introduction to the Theory of Computation
(3rd ed.).

Jessica Guo and Audrey Wei Mentor: Kerri Lu MIT Primes Circle

NP-Completeness


	Introduction
	Time Complexity
	Polynomial Time
	Non-Deterministic Polynomial Time
	NP-Completeness

