Group Theory Basics		Abelian Simple Groups

Symmetry and Simplicity in Finite Group Theory

Gracie Sheng¹ Evelyn Zhu²

¹Massachusetts Academy of Math and Science at WPI

²Boston Trinity Academy

PRIMES Conference 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

1/31

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

Group Theory Basics		
•0000000		

Roadmap

1 Group Theory Basics

2 Symmetries

3 Cyclic Groups

4 Finite Simple Groups

5 Abelian Simple Groups

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

2/31

ヘロト ヘロト ヘヨト ヘヨト

э

What is Group Theory?

- Branch of abstract algebra that studies algebraic structures called groups
- Foundation for other interests in mathematics such as representation theory
- Model patterns in nature, manipulations, and puzzles
- Forces, public key cryptography, Rubik's cube

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

Group Theory Basics		
0000000		

Groups

Definition

A group is a finite or infinite set G together with a binary group operation $\circ: G \times G \rightarrow G$ that fulfill the group axioms:

- **i** Closure: For all $g, h \in G$, the element $g \circ h \in G$.
- **ii** Associativity: For $f, g, h \in G$, we have $(f \circ g) \circ h = f \circ (g \circ h)$.
- ☑ *Inverse:* For each $g \in G$, there exists an *inverse* element $g^{-1} \in G$ such that $g \circ g^{-1} = e = g^{-1} \circ g$.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Group Theory Basics Sy		Cyclic Groups	Finite Simple Groups	
000000000000000000000000000000000000000	00000000 (0000	0000	00000

Subgroups

Definition

Let G be a group. The subset H of G is a subgroup of G if it satisfies the group axioms under the binary operation of G. This relation is denoted as $H \leq G$.

- Subgroups help to "shrink" and simplify groups
- Smaller structures give insight to the whole

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

イロト 不得 とくきとくきとうき

Injection, Surjection, and Bijection

• The function $f : X \to Y$ is *injective* if for all $x, x' \in X$, $f(x) = f(x') \Rightarrow x = x'$.

Gracie Sheng, Evelyn Zhu

issachusetts Academy of Math and Science at WPI. Boston Trinity Acade

ヘロト ヘロト ヘヨト ヘヨト

3

Symmetry and Simplicity in Finite Group Theory

イロト 不得 トイヨト イヨト 二日

6/31

Injection, Surjection, and Bijection

- The function $f : X \to Y$ is *injective* if for all $x, x' \in X$, $f(x) = f(x') \Rightarrow x = x'$.
- The function $f : X \to Y$ is surjective if for all $y \in Y$, there is $x \in X$ such that f(x) = y.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

Group Theory BasicsSymmetriesCyclic GroupsFinite Simple GroupsAbelian Simple Groups000000000000000000000000000000

Injection, Surjection, and Bijection

The function $f : X \to Y$ is *bijective* if for all $y \in Y$, there is a unique $x \in X$ such that f(x) = y.

Gracie Sheng, Evelyn Zhu

lassachusetts Academy of Math and Science at WPI, Boston Trinity Acader

イロト 不得 トイヨト イヨト

э

Symmetry and Simplicity in Finite Group Theory

7/31

Homomorphisms and Isomorphisms

- The Greek roots "homo" and "morph" mean "same shape."
- A *homomorphism* is a special correspondence between elements of two groups.
- A *isomorphism* is a function that captures a one-to-one relationship between two groups.

Homomorphisms and Isomorphisms

Definition

A homomorphism is a map $\phi : G \to H$ between two groups satisfying $\phi(ab) = \phi(a)\phi(b)$, for all $a, b \in G$.

Definition

A group *isomorphism* is a group homomorphism which is a bijection.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

9/31

Symmetries		
00000000		

Roadmap

1 Group Theory Basics

2 Symmetries

3 Cyclic Groups

4 Finite Simple Groups

5 Abelian Simple Groups

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Symmetries		
00000000		

Symmetries in Life

Figure 1: Symmetry in chemistry - Trinitrotoluene (TNT)

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

11/31

Group Theory Basics	Symmetries 00000000		Abelian Simple Groups

Figure 2: Symmetry in architecture - Taj Mahal in Agra, India built in marble from 1634 to 1656

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Symmetric Group

Definition (Symmetric Group)

- The elements of the group are permutations on the given set (i.e., bijective maps from the set to itself).
- The product of two elements is their composite as permutations, i.e., function composition.
- The identity element of the group is the identity function from the set to itself.
- The inverse of an element in the group is its inverse as a function.

A group is said to be a *symmetric group* if it is isomorphic to the symmetric group on some set.

Gracie Sheng, Evelyn Zhu

イロト 不得 トイヨト イヨト

э

Example of Symmetric Groups: log and exp

Example

- Let ℝ[×] be the multiplicative group of positive real numbers, and let ℝ be the additive group of real numbers.
- The logarithm function log : ℝ^x → satisfies that log(xy) = log(x) + log(y) for all x, y ∈ ℝ^x, so log is a group homomorphism.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

Example of Symmetric Groups: log and exp

Example

- The exponential function exp : $\mathbb{R} \to \mathbb{R}^x$ satisfies exp(x + y) = exp(x) + exp(y) for all $x, y \in \mathbb{R}$ so exponential function is also a homomorphism.
- Logarithm and exponential function are *inverses* of each other. Since log is a homomorphism that has an inverse exp that is also a homomorphism
- So, both log and (exp) are isomorphisms between \mathbb{R}^{\times} and \mathbb{R} .

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

Symmetries

Cyclic Gro

Finite Simple Group

Abelian Simple Groups

Cayley Table

	е	$\mathbf{R_1}$	\mathbf{R}_2	\mathbf{S}_1	S_2	S_3
е	e	R_1	R_2	S_1	S_2	S_3
$\mathbf{R_1}$	R_1	R_2	e	S_3	S_1	S_2
\mathbf{R}_2	R_2	e	R_1	S_2	S_3	S_1
S_1	S_1	S_2	S_3	e	R_1	R_2
S_2	S_2	S_3	S_1	R_2	e	R_1
S_3	S_3	S_1	S_2	R_1	R_2	e

Cayley Table: describes the structure of a finite group by arranging all the possible products of all the group's elements in a square table reminiscent of an addition or multiplication table.

	Symmetries			
0000000	000000000	0000	0000	00000

Cayley's Theorem

Theorem (Cayley)

Every group G is isomorphic to a subgroup of a symmetric group. Specifically, G is isomorphic to a subgroup of the symmetric group whose elements are the permutations of the underlying set of G.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Cayley's Theorem

Proof.

To prove Cayley's theorem we need to find a subgroup H of Sym(G) and a bijective homomorphism $f : G \to H$. The roadmap for the proof is:

- Define ϕ_a : $G \to G$ for each $a \in G$ and show that ϕ_a is a bijection
- Define $H \phi_a \mid a \in G$ and show that $H \leq Sym(G)$
- Define $f : G \rightarrow H$ and show that f is both a bijection and homomorphism

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

		Cyclic Groups		
0000000	00000000	0000	0000	00000

Roadmap

1 Group Theory Basics

2 Symmetries

3 Cyclic Groups

4 Finite Simple Groups

5 Abelian Simple Groups

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

19/31

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

0000000 0000000 0000 0000 0000			Cyclic Groups		
	0000000	00000000	0000	0000	00000

Definition

A group G is cyclic if G can be generated by a single element, that is, if there is some element $g \in G$ such that $G = \{g^n \mid n \in \mathbb{Z}\}$. We say that G is generated by g.

Gracie Sheng, Evelyn Zhu

issachusetts Academy of Math and Science at WPI, Boston Trinity Academy

イロト イポト イヨト イヨト

э

Symmetry and Simplicity in Finite Group Theory

20/31

Group Theory Basics	Cyclic Groups ○○●○	Abelian Simple Groups

Definition

A group G is cyclic if G can be generated by a single element, that is, if there is some element $g \in G$ such that $G = \{g^n \mid n \in \mathbb{Z}\}$. We say that G is generated by g.

Theorem

Any two cyclic groups of the same order are isomorphic.

We often express the cyclic group of order n as Z_n . Every infinite cyclic group is isomorphic to the additive group of \mathbb{Z} , the integers. Every finite cyclic group of order n is isomorphic to the additive group of $\mathbb{Z}/n\mathbb{Z}$, the integers modulo n.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

		Cyclic Groups		
0000000	00000000	0000	0000	00000

Theorem (Lagrange)

If G is a finite group and $H \leq G$, then the order of H divides the order of G.

Gracie Sheng, Evelyn Zhu

Massachusetts Academy of Math and Science at WPI. Boston Trinity Academy

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Symmetry and Simplicity in Finite Group Theory

22/31

		Cyclic Groups		
0000000	00000000	0000	0000	00000

Theorem (Lagrange)

If G is a finite group and $H \leq G$, then the order of H divides the order of G.

Corollary

If G is a group of prime order p, then G is cyclic. Then $G \cong Z_p$.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

		Cyclic Groups		
0000000	00000000	0000	0000	00000

Theorem (Lagrange)

If G is a finite group and $H \leq G$, then the order of H divides the order of G.

Corollary

If G is a group of prime order p, then G is cyclic. Then $G \cong Z_p$.

Proof.

Let $g \in G$, $g \neq e_G$. Thus $|\langle g \rangle| > 1$ and $|\langle g \rangle|$ divides |G|. Since |G| is prime we must have $|\langle g \rangle| = |G|$. Hence $G = \langle g \rangle$ is cyclic. Since cyclic groups of equal order are isomorphic, we have $G \cong Z_p$.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

			Finite Simple Groups	
0000000	00000000	0000	•000	00000

Roadmap

1 Group Theory Basics

2 Symmetries

3 Cyclic Groups

4 Finite Simple Groups

5 Abelian Simple Groups

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

・ロン ・四 と ・ ヨン ・ ヨ

Group Theory Basics		Finite Simple Groups ○●○○	Abelian Simple Groups

Normal Subgroups

Definition

The element gng^{-1} is the conjugate of $n \in N$ by g. The set $gNg^{-1} = \{gng^{-1} \mid n \in N\}$ is the conjugate of N by g. If $gNg^{-1} = N$, the element g is said to normalize N.

Definition

The subgroup N of a group G is normal if $gNg^{-1} = N$, or equivalently gN = Ng, for all $g \in G$, i.e. if every element of G normalizes N. This relation is denoted as $N \leq G$.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

			Finite Simple Groups	
0000000	00000000	0000	0000	00000

Simple Groups

Definition

A nontrivial group G is *simple* if its only normal subgroups are the identity and itself.

Theorem (Feit-Thompson)

If G is a simple group of odd order, then $G \cong Z_p$ for some prime p.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

イロト 不得 トイヨト イヨト 二日

26/31

Classification of Finite Simple Groups

Theorem (Classification Theorem, Gorenstein)

Every finite simple group is isomorphic to one of the following:

- A cyclic group of prime order;
- An alternating group;
- A member of one of sixteen infinite families of groups of Lie type; or
- One of twenty-six sporadic groups not isomorphic to any of the above groups.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

Group Theory Basics	Symmetries	Cyclic Groups	Finite Simple Groups	Abelian Simple Groups

Roadmap

1 Group Theory Basics

2 Symmetries

3 Cyclic Groups

4 Finite Simple Groups

5 Abelian Simple Groups

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

				Abelian Simple Groups
0000000	00000000	0000	0000	0000

Theorem

Abelian simple groups are cyclic groups of prime order.

Gracie Sheng, Evelyn Zhu

Massachusetts Academy of Math and Science at WPI. Boston Trinity Academy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Symmetry and Simplicity in Finite Group Theory

28/31

Theorem

Abelian simple groups are cyclic groups of prime order.

Lemma

Every subgroup of an abelian group is normal.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Abelian simple groups are cyclic groups of prime order.

Lemma

Every subgroup of an abelian group is normal.

Proof.

Let G be an abelian group and let $H \leq G$. Consider an element $x \in gHg^{-1}$. Since G is abelian and $g, h \in G$, we have

$$x = (gh)g^{-1} = (hg)g^{-1} = h \in H \Rightarrow gHg^{-1} \subseteq H \Rightarrow H \trianglelefteq G$$

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Theorem

Abelian simple groups are cyclic groups of prime order.

Proof.

 (\Rightarrow) If G is a simple abelian group, then the order of G is prime.

- Suppose that G is a simple abelian group and consider $\langle g \rangle \leq G$ where $g \in G$ is a nonidentity element.
- Since G is abelian, every subgroup of G is normal. Since G is simple, we must have $\langle g \rangle = G$ and G be of finite order.
- Let |g| = |G| = p. FSOC assume that p = mn is a composite number. Then $\langle g^m \rangle \leq G$, but G is simple, so p must be prime.

Gracie Sheng, Evelyn Zhu

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Proof.

 (\Leftarrow) If the order of G is prime, then G is a simple abelian group.

Similar to the forward direction

Abelian simple groups are cyclic groups of prime order.

Gracie Sheng, Evelyn Zhu

Symmetry and Simplicity in Finite Group Theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Acknowledgements

We would like to acknowledge

- Prof. Pavel Etingof, PRIMES Chief Research Advisor
- Dr. Slava Gerovitch, PRIMES Program Director
- Marisa Gaetz and Mary Stelow, PRIMES Circle Coordinators
- Gabrielle Kaili-May Liu, PRIMES Circle Mentor

for providing us the opportunity to deeply explore complex topics in math.

Thank you for listening!