The Probabilistic Method

Anuj Sakarda and Jerry Tan

Mentor: Youn Kim

May 21, 2022 MIT PRIMES

Introduction

Probabilistic Method (Ver. 1)

Try to prove that a structure with certain desired properties exists by showing the properties hold with positive probability.
" $P($ Event $)>0 \Longrightarrow$ Event is non-empty."

Definition (Expected Value)

The expected value of a random variable with possible outcomes x is given by

$$
E[X]=\sum_{x} x P[X=x]
$$

Probabilistic Method (Ver. 2)
If X is a random variable, there exists a point in the probability space for which $X \geq E[X]$ and a point for which $X \leq E[X]$.
" \exists value greater than or equal to the mean."

Ramsey Numbers

Definition (Ramsey Numbers)

The Ramsey number $R(k, l)$ is the smallest $n \in \mathbb{Z}$ such that in any two-coloring of the edges of a K_{n} graph, there is either a red K_{k} or a blue K_{l}.

Examples

$$
R(3,3)=6
$$

Examples

	l						5
		3	4	5	18		
	3	6	9	14	$[35,41]$		
	4	9	18	25	$[58,87]$		
	5	14	25	$[43,49]$	$[102,165]$		
	6	18	$[35,41]$	$[58,87]$			

Ramsey Numbers and the Probabilistic Method

Proposition
If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$.

Ramsey Numbers and the Probabilistic Method

Proposition
If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$.

k	3	4	5	6	7	8	9	10	11	12
n	3	6	11	17	27	42	65	100	152	231

Table: $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} \approx 1$

Ramsey Numbers and the Probabilistic Method

Proposition

If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$.

k	3	4	5	6	7	8	9	10	11	12
n	3	6	11	17	27	42	65	100	152	231

Table: $\binom{n}{k} \cdot 2^{1-\binom{k}{2}} \approx 1$

Proof.

$R:=$ subset of k vertices
$A_{R}:=$ event where R has only red or only blue edges
$\operatorname{Pr}\left[A_{R}\right]=\frac{2}{2^{k}\binom{k}{2}} \Longrightarrow \operatorname{Pr}[A] \leq\binom{ n}{k} \cdot 2^{1-\binom{k}{2}}<1$
$\operatorname{Pr}\left[\right.$ no $\left.A_{R}\right]>0$, so there exists some coloring that does not satisfy the conditions.

Ramsey Numbers and the Probabilistic Method

Theorem

If there exists a real $p \in[0,1]$ such that

$$
\binom{n}{k} p^{k}\binom{k}{2}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1,
$$

then $R(k, t)>n$.

Proof.

$p:=$ probability any given edge is colored red
$R:=$ subset of k vertices, $B:=$ subset of t vertices
$A_{R}:=$ event where R has only red edges, $B_{B}:=$ event where B has only blue edges
$\operatorname{Pr}\left[\right.$ no A_{R} or $\left.B_{B}\right]>0$, so there exists some coloring that does not satisfy the conditions.

Bounds on Ramsey Numbers

Proposition

If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$.
Corollary 1
$R(k, k)>\left\lfloor 2^{k / 2}\right\rfloor$.

Bounds on Ramsey Numbers

Proposition

If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$.
Corollary 1
$R(k, k)>\left\lfloor 2^{k / 2}\right\rfloor$.

Theorem

If there exists a real $p \in[0,1]$ such that

$$
\binom{n}{k} p^{\binom{k}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1,
$$

then $R(k, t)>n$.
Corollary 2
$R(4, t) \geq \Omega\left((t / \log t)^{3 / 2}\right)$.

Ramsey Numbers and Linearity of Expectation

Theorem

For any $n, R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2} \text {. }}$

Ramsey Numbers and Linearity of Expectation

Theorem

For any $n, R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2} \text {. }}$

Proof.

$R:=$ subset of k vertices
$X_{R}:=1$ iff K_{k} determined by R is monochromatic
$E[X]=\binom{n}{k} 2^{1-\binom{k}{2}}=m$
Take a two-coloring with $X \leq E[X]$
Remove one vertex from each R where $X_{R}=1$
At most m vertices removed, so $s \geq n-m$

Theorem

If there exists $p \in[0,1]$ with

$$
\binom{n}{k} p^{\binom{k}{2}}+\binom{n}{1}(1-p)^{\binom{1}{2}}<1,
$$

then $R(k, I)>n$.

Corollary

For all integers n and $p \in[0,1]$,

$$
R(k, l)>n-\binom{n}{k} p^{\binom{k}{2}}-\binom{n}{l}(1-p)^{\binom{l}{2}} .
$$

The Heilbronn Triangle Problem

Let's Play a Game

You pick a set S of n points in a unit square. I pick the smallest triangle with vertices in S. You win if the triangle is big. How big can you force the triangle to be in terms of n ?

The Heilbronn Triangle Problem

Let's Play a Game

You pick a set S of n points in a unit square. I pick the smallest triangle with vertices in S. You win if the triangle is big. How big can you force the triangle to be in terms of n ?

The Problem

Q: What is

$$
\max _{|S|=n} \min _{\text {in } S} \operatorname{Area}(\triangle):=T(n) ?
$$

Example and Initial Conjecture

Example with $n=16$

Example and Initial Conjecture

Example with $n=16$

Heilbronn conjectured that $T(n)=O\left(1 / n^{2}\right)$, an upper bound.

[^0]
Proof.

Look for upper bound on $\operatorname{Pr}[\mu \leq \epsilon]$.

Proof.

$$
\operatorname{Pr}[b \leq x \leq b+\Delta b] \leq(b+\Delta b)^{2} \pi-b^{2} \pi=2 \pi b \Delta b+\left[(\Delta b)^{2} \pi\right] .
$$

Proof.

Since $0 \leq b \leq \sqrt{2}$, we have

$$
\operatorname{Pr}[\mu \leq \epsilon] \leq \int_{0}^{\sqrt{2}}(2 \pi b)(4 \sqrt{2} \epsilon / b) d b=16 \pi \epsilon
$$

Proof.

Let X denote the number of triangles $P_{i} P_{j} P_{k}$ with area at most $1 /\left(100 n^{2}\right)$. Taking $\epsilon=1 /\left(100 n^{2}\right)$ from above, the probability for a particular i, j, k is $16 \pi /\left(100 n^{2}\right)<0.6 / n^{2}$.

A Lower Bound

Proof.

Then

$$
E[X]<\binom{2 n}{3} 0.6 / n^{2}<n .
$$

Thus there exists a specific set of $2 n$ vertices with fewer than n triangles of area less than $1 /\left(100 n^{2}\right)$.

Delete one vertex from each such triangle. This leaves at least n vertices, and no triangle has area less than $1 /\left(100 n^{2}\right)$.

Best Known bounds

Conjecture (Heilbronn)

$T(n)=O\left(\frac{1}{n^{2}}\right)$ (Upper Bound).
Theorem (1)
$T(n)=\Omega\left(\frac{1}{n^{2}}\right)($ Lower Bound $)$.
Theorem (Komlós, Pintz \& Szemerédi (1981))
$T(n) \leq\left(\frac{\exp (c \sqrt{\log n})}{n^{8 / 7}}\right)$ for some constant c (Upper Bound).
Theorem (Komlós, Pintz \& Szemerédi (1982))

$$
T(n)=\Omega\left(\frac{\log n}{n^{2}}\right)(\text { Lower Bound }) .
$$

Acknowledgements

Acknowledgements

We would like to thank our mentor Youn Kim for his guidance and support throughout this project. We would also like to thank Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, and the MIT PRIMES program for the opportunity to work on this project. Finally, we want to thank our parents for their support.

References I

[1] N. Alon, J.H. Spencer, The Probabilistic Method. New Jersey: John Wiley \& Sons, Inc., 2016.

[^0]: Theorem (1)
 There is a set S of n points in unit square U such that $T(S) \geq 1 /\left(100 n^{2}\right)$.

