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Defining Quivers

Definition
A quiver is a directed graph in which we allow for self-loops and multiple
edges between vertices.

Example

2 / 23



Defining Quivers

Definition
A quiver is a directed graph in which we allow for self-loops and multiple
edges between vertices.

Example

2 / 23



Quiver Representations

Definition
A representation of a quiver is an assignment to each vertex i a vector space
Vi and to each directed edge a → b a linear map ϕab : Va → Vb.

Example

V1
V2

V3

V4

φ1,2
φ2,3

φ2,4
φ2,1
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Subrepresentations

Definition

Let (Vi, ϕV ) be a representation of a quiver Q. Then a subrepresentation is
a representation (Wi, ϕW ) where Wi ⊂ Vi for all vertices i, and
ϕWab

(Wa) ⊂ Wb and ϕWab
= ϕVab

|Wa
: Wa → Wb for all edges a → b.

Example

V1
V2

V3

V4

φ1,2
φ2,3

φ2,4
φ2,1
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φ2,4 |W2

Wi ⊂ Vi
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Indecomposable Representations

Definition

Let (Vi, ϕV ) and (Yi, ϕY ) be two representations of a quiver Q. Their direct
sum is the representation (Vi ⊕ Yi, ϕV ⊕ ϕY ).

Example

V1
V2

V3

V4

φV1,2

φV2,3

φV2,4

φV2,1

Y1

Y2

Y3

Y4

φY1,2

φY2,1

φY2,3

φY2,4

⊕

V1 ⊕ Y1 V2 ⊕ Y2

V3 ⊕ Y3

V4 ⊕ Y4

(φV ⊕ φY )1,2

(φV ⊕ φY )2,1

(φV ⊕ φY )2,3

(φV ⊕ φY )2,4
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Indecomposable Representations of A2

Definition
A representation of a quiver Q is indecomposable if it cannot be written as
a direct sum of two nonzero representations.

Example

We want to find the indecomposable representations of A2:

V

A

W
1 Let V ′ be the complement to the kernel of A in V , W ′ be the complement

to the image of A in W

2 We can decompose the representation:

= ⊕ ⊕A 0 A 0
∼V W ker(A) 0 V ′ Im(A) 0 W ′

These are not necessarily indecomposable. Rather, they are ‘multiples’ of:

0 01 1 1 1
These are the three indecomposable representations of A2.
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Indecomposable Representations of A3

Example

We can also write down the indecomposable representations of A3:

01 0 00 1

11 1 10 1

11 0

10 0

∼

∼ ∼ ∼

Remark
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Question

When does a quiver have finitely many indecomposable representations?

8 / 23



Adjacency matrix

Definition
For any quiver whose vertices are labeled 1, . . . , n, define the matrix RΓ to be
the adjacency matrix of the underlying (undirected) graph Γ. This is the
matrix with entries rij , where rij is the number of edges between vertices i
and j.

Example

1 2 3

4

RΓ =


0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0


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Cartan matrix

Definition
With the adjacency matrix RΓ, we define the Cartan matrix of Γ by

AΓ = 2I −RΓ

where I is the identity matrix with appropriate size.

Example

1 2 3

4

AΓ =


2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2


Remark

Note that the adjacency matrix (and hence the Cartan matrix) is always
symmetric.
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Inner Product

For a graph Γ with n vertices and its Cartan matrix AΓ, we define an inner
product B on Rn by

B(x, y) = xTAΓy.

In other words, we have
B(ei, ej) = aij

for basis vectors ei, ej , where aij is the element in the ith row and jth column
in AΓ. This is then extended linearly.

Theorem (Gabriel)

A quiver with underlying graph Γ has finitely many indecomposable
representation if and only if B is positive definite, i.e., B(x, x) > 0 for all
x ̸= 0.
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Dynkin Quivers

Definition
We call Γ a Dynkin diagram if the inner product B is positive definite.

With this definition, we can fully classify all the Dynkin quivers, which are
Dynkin diagrams with edges oriented.

12 / 23



Dynkin Quivers

Definition
We call Γ a Dynkin diagram if the inner product B is positive definite.

With this definition, we can fully classify all the Dynkin quivers, which are
Dynkin diagrams with edges oriented.

12 / 23



Roots

Note that since all entries of AΓ are integers, we can restrict this inner
product to the lattice Zn.

Proposition

B(x, x) is even for all x ∈ Zn.

Proof.
By definition,

B(x, x) = xTAΓx = 2
∑
i

x2
i + 2 ·

∑
i<j

aijxixj

which is even.

Definition

A root is a nonzero vector of shortest length (with respect to the inner
product) in Zn. For the inner product B, a root is a nonzero vector x ∈ Zn

with B(x, x) = 2.

13 / 23



Roots

Note that since all entries of AΓ are integers, we can restrict this inner
product to the lattice Zn.

Proposition

B(x, x) is even for all x ∈ Zn.

Proof.
By definition,

B(x, x) = xTAΓx = 2
∑
i

x2
i + 2 ·

∑
i<j

aijxixj

which is even.

Definition

A root is a nonzero vector of shortest length (with respect to the inner
product) in Zn. For the inner product B, a root is a nonzero vector x ∈ Zn

with B(x, x) = 2.

13 / 23



Roots

Note that since all entries of AΓ are integers, we can restrict this inner
product to the lattice Zn.

Proposition

B(x, x) is even for all x ∈ Zn.

Proof.
By definition,

B(x, x) = xTAΓx = 2
∑
i

x2
i + 2 ·

∑
i<j

aijxixj

which is even.

Definition

A root is a nonzero vector of shortest length (with respect to the inner
product) in Zn. For the inner product B, a root is a nonzero vector x ∈ Zn

with B(x, x) = 2.

13 / 23



Simple Roots

Remark
There are finitely many roots, since they are integer lattice points contained in
some ball.

Definition
We call roots of the form

αi = (0, . . . , 1︸︷︷︸
ith

, . . . , 0)

simple roots.

Clearly these have norm
√
2 and span our lattice Zn.
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Positive and Negative Roots

The choice of roots as “simple” on the previous slide is particularly good for
the following reason:

Lemma
Let α be a root, and write it as a linear combination of simple roots
α =

∑n
i=1 kiαi. Then either ki ≥ 0 for all i or ki ≤ 0 for all i.

Definition
If ki ≥ 0 for all i, we call α a positive root; if ki ≤ 0 for all i, we call α a
negative root.
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Roots of A2

The Cartan matrix for A2 is given by

1 2 AΓ =

(
2 −1
−1 2

)

Our inner product B is defined on Z2 as

B((x1, x2), (y1, y2)) = 2x1y1 + 2x2y2 − x1y2 − x2y1.

Hence,
B(x, x) = 2x2

1 + 2x2
2 − 2x1x2,

so we can check that the only roots (when B(x, x) = 2) are

(1, 0), (0, 1), (1, 1),

(−1, 0), (0,−1), (−1,−1);

the first row is the positive roots while the second row is the negative roots.
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Roots of A3

The Cartan matrix for A3 is given by

1 2 3 AΓ =

 2 −1 0
−1 2 −1
0 −1 2



The form is
B(x, x) = 2x2

1 + 2x2
2 + 2x2

3 − 2x1x2 − 2x2x3.

The positive roots are

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1)

(and the negative roots are their negations).
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Roots of A3
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Gabriel’s theorem

Let Q be a quiver whose vertices are labeled 1, . . . , n. Let V = (V1, . . . , Vn) be
a representation of Q. The dimension vector of this representation is

d(V ) = (dimV1, . . . ,dimVn).

Theorem (Gabriel)

Let Q be a Dynkin quiver. Then the dimension vector of any indecomposable
representation is a positive root with respect to B. Further, for any positive
root α there is exactly one indecomposable representation with dimension
vector α.
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Gabriel’s theorem on A2

To see Gabriel’s theorem in action, consider representations of A2.

Recall the three indecomposable representations for A2:

0 01 1 1 1

And here are the three positive roots for A2:

(1, 0), (0, 1), (1, 1).

Notice how these sets match up!
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Gabriel’s theorem on A3

We can also consider representations of A3.

Recall the six indecomposable representations for A3:

01 0 00 1

11 1 10 1

11 0

10 0

∼

∼ ∼ ∼
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(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1).
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