Dynkin Quivers and their Representations

Ilaria Seidel, Nathan Xiong, William Yue

Mentored by Dr. Sasha Utiralova

MIT PRIMES Reading Conference

May 21, 2022

A **quiver** is a directed graph in which we allow for self-loops and multiple edges between vertices.

A **quiver** is a directed graph in which we allow for self-loops and multiple edges between vertices.

A **representation** of a quiver is an assignment to each vertex *i* a vector space V_i and to each directed edge $a \to b$ a linear map $\phi_{ab} : V_a \to V_b$.

A **representation** of a quiver is an assignment to each vertex *i* a vector space V_i and to each directed edge $a \to b$ a linear map $\phi_{ab} : V_a \to V_b$.

Let (V_i, ϕ_V) be a representation of a quiver Q. Then a **subrepresentation** is a representation (W_i, ϕ_W) where $W_i \subset V_i$ for all vertices i, and $\phi_{W_{ab}}(W_a) \subset W_b$ and $\phi_{W_{ab}} = \phi_{V_{ab}} |_{W_a} \colon W_a \to W_b$ for all edges $a \to b$.

Let (V_i, ϕ_V) be a representation of a quiver Q. Then a **subrepresentation** is a representation (W_i, ϕ_W) where $W_i \subset V_i$ for all vertices i, and $\phi_{W_{ab}}(W_a) \subset W_b$ and $\phi_{W_{ab}} = \phi_{V_{ab}} |_{W_a} \colon W_a \to W_b$ for all edges $a \to b$.

Let (V_i, ϕ_V) and (Y_i, ϕ_Y) be two representations of a quiver Q. Their **direct** sum is the representation $(V_i \oplus Y_i, \phi_V \oplus \phi_Y)$.

Definition

Let (V_i, ϕ_V) and (Y_i, ϕ_Y) be two representations of a quiver Q. Their **direct** sum is the representation $(V_i \oplus Y_i, \phi_V \oplus \phi_Y)$.

Definition

A representation of a quiver Q is **indecomposable** if it cannot be written as a direct sum of two nonzero representations.

Definition

A representation of a quiver Q is **indecomposable** if it cannot be written as a direct sum of two nonzero representations.

Example

We want to find the indecomposable representations of A_2 :

Definition

A representation of a quiver Q is **indecomposable** if it cannot be written as a direct sum of two nonzero representations.

Example

We want to find the indecomposable representations of A_2 :

Definition

A representation of a quiver Q is **indecomposable** if it cannot be written as a direct sum of two nonzero representations.

Example

We want to find the indecomposable representations of A_2 :

- Let V' be the complement to the kernel of A in V, W' be the complement to the image of A in W
- We can decompose the representation:

$$\underbrace{A}_{W} = \underbrace{0}_{\ker(A)} \underbrace{0}_{0} \oplus \underbrace{A}_{V'} \underbrace{0}_{\operatorname{Im}(A)} \oplus \underbrace{0}_{0} \underbrace{0}_{W}$$

-1

Definition

A representation of a quiver Q is **indecomposable** if it cannot be written as a direct sum of two nonzero representations.

Example

We want to find the indecomposable representations of A_2 :

- Let V' be the complement to the kernel of A in V, W' be the complement to the image of A in W
- We can decompose the representation:

$$\underbrace{ \begin{array}{c} A \\ V \end{array} }_{V} \underbrace{ \begin{array}{c} W \\ W \end{array} }_{W} = \underbrace{ \begin{array}{c} 0 \\ \ker(A) \end{array} }_{V} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{V'} \underbrace{ \begin{array}{c} A \\ \sim Im(A) \end{array} }_{Im(A)} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{V'} \underbrace{ \begin{array}{c} 0 \\ W' \end{array} }_{W'} \end{array} }_{Im(A)}$$
These are not necessarily indecomposable. Rather, they are 'multiples' of:
$$\underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 1 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \\ 0 \end{array} }_{1} \underbrace{ \begin{array}{c} 0 \end{array} }_{1} \underbrace{ \end{array}{}_{1} \underbrace{ \end{array}{}_{$$

Definition

A representation of a quiver Q is **indecomposable** if it cannot be written as a direct sum of two nonzero representations.

Example

We want to find the indecomposable representations of A_2 :

- Let V' be the complement to the kernel of A in V, W' be the complement to the image of A in W
- We can decompose the representation:

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$$
These are the three indecomposable representations of A_2. \end{array}

Example

We can also write down the indecomposable representations of A_3 :

Example

We can also write down the indecomposable representations of A_3 :

Example

We can also write down the indecomposable representations of A_3 :

• When does a quiver have finitely many indecomposable representations?

For any quiver whose vertices are labeled $1, \ldots, n$, define the matrix R_{Γ} to be the *adjacency matrix* of the underlying (undirected) graph Γ . This is the matrix with entries r_{ij} , where r_{ij} is the number of edges between vertices iand j.

For any quiver whose vertices are labeled $1, \ldots, n$, define the matrix R_{Γ} to be the *adjacency matrix* of the underlying (undirected) graph Γ . This is the matrix with entries r_{ij} , where r_{ij} is the number of edges between vertices iand j.

Cartan matrix

Definition

With the adjacency matrix R_{Γ} , we define the *Cartan matrix* of Γ by

$$A_{\Gamma} = 2I - R_{\Gamma}$$

where I is the identity matrix with appropriate size.

Cartan matrix

Definition

With the adjacency matrix R_{Γ} , we define the *Cartan matrix* of Γ by

$$A_{\Gamma} = 2I - R_{\Gamma}$$

where I is the identity matrix with appropriate size.

Cartan matrix

Definition

With the adjacency matrix R_{Γ} , we define the *Cartan matrix* of Γ by

$$A_{\Gamma} = 2I - R_{\Gamma}$$

where I is the identity matrix with appropriate size.

Remark

Note that the adjacency matrix (and hence the Cartan matrix) is always symmetric.

For a graph Γ with *n* vertices and its Cartan matrix A_{Γ} , we define an inner product *B* on \mathbb{R}^n by

$$B(x,y) = x^T A_{\Gamma} y.$$

In other words, we have

$$B(e_i, e_j) = a_{ij}$$

for basis vectors e_i, e_j , where a_{ij} is the element in the *i*th row and *j*th column in A_{Γ} . This is then extended linearly.

For a graph Γ with *n* vertices and its Cartan matrix A_{Γ} , we define an inner product *B* on \mathbb{R}^n by

$$B(x,y) = x^T A_{\Gamma} y.$$

In other words, we have

$$B(e_i, e_j) = a_{ij}$$

for basis vectors e_i, e_j , where a_{ij} is the element in the *i*th row and *j*th column in A_{Γ} . This is then extended linearly.

Theorem (Gabriel)

A quiver with underlying graph Γ has finitely many indecomposable representation if and only if B is positive definite, i.e., B(x,x) > 0 for all $x \neq 0$.

Dynkin Quivers

Definition

We call Γ a *Dynkin diagram* if the inner product B is positive definite.

Dynkin Quivers

Definition

We call Γ a *Dynkin diagram* if the inner product B is positive definite.

With this definition, we can fully classify all the Dynkin quivers, which are Dynkin diagrams with edges oriented.

Roots

Note that since all entries of A_{Γ} are integers, we can restrict this inner product to the lattice \mathbb{Z}^n .

Proposition

B(x,x) is even for all $x \in \mathbb{Z}^n$.

Roots

Note that since all entries of A_{Γ} are integers, we can restrict this inner product to the lattice \mathbb{Z}^n .

Proposition

B(x,x) is even for all $x \in \mathbb{Z}^n$.

Proof.

By definition,

$$B(x,x) = x^T A_{\Gamma} x = 2 \sum_{i} x_i^2 + 2 \cdot \sum_{i < j} a_{ij} x_i x_j$$

which is even.

Roots

Note that since all entries of A_{Γ} are integers, we can restrict this inner product to the lattice \mathbb{Z}^n .

Proposition

B(x,x) is even for all $x \in \mathbb{Z}^n$.

Proof.

By definition,

$$B(x,x) = x^T A_{\Gamma} x = 2 \sum_{i} x_i^2 + 2 \cdot \sum_{i < j} a_{ij} x_i x_j$$

which is even.

Definition

A **root** is a nonzero vector of shortest length (with respect to the inner product) in \mathbb{Z}^n . For the inner product B, a root is a nonzero vector $x \in \mathbb{Z}^n$ with B(x, x) = 2.

Remark

There are finitely many roots, since they are integer lattice points contained in some ball.

Definition

We call roots of the form

$$\alpha_i = (0, \dots, \underbrace{1}_{i\text{th}}, \dots, 0)$$

simple roots.

Remark

There are finitely many roots, since they are integer lattice points contained in some ball.

Definition

We call roots of the form

$$\alpha_i = (0, \dots, \underbrace{1}_{i\text{th}}, \dots, 0)$$

simple roots.

Clearly these have norm $\sqrt{2}$ and span our lattice \mathbb{Z}^n .

The choice of roots as "simple" on the previous slide is particularly good for the following reason:

Lemma

Let α be a root, and write it as a linear combination of simple roots $\alpha = \sum_{i=1}^{n} k_i \alpha_i$. Then either $k_i \geq 0$ for all *i* or $k_i \leq 0$ for all *i*.

The choice of roots as "simple" on the previous slide is particularly good for the following reason:

Lemma

Let α be a root, and write it as a linear combination of simple roots $\alpha = \sum_{i=1}^{n} k_i \alpha_i$. Then either $k_i \geq 0$ for all i or $k_i \leq 0$ for all i.

Definition

If $k_i \ge 0$ for all *i*, we call α a **positive root**; if $k_i \le 0$ for all *i*, we call α a **negative root**.

The Cartan matrix for A_2 is given by

$$1 - 2 \qquad A_{\Gamma} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

The Cartan matrix for A_2 is given by

$$1 - 2 \qquad A_{\Gamma} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Our inner product B is defined on \mathbb{Z}^2 as

$$B((x_1, x_2), (y_1, y_2)) = 2x_1y_1 + 2x_2y_2 - x_1y_2 - x_2y_1.$$

The Cartan matrix for A_2 is given by

$$1 - 2 \qquad A_{\Gamma} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Our inner product B is defined on \mathbb{Z}^2 as

$$B((x_1, x_2), (y_1, y_2)) = 2x_1y_1 + 2x_2y_2 - x_1y_2 - x_2y_1.$$

Hence,

$$B(x,x) = 2x_1^2 + 2x_2^2 - 2x_1x_2,$$

so we can check that the only roots (when B(x, x) = 2) are

$$(1,0),$$
 $(0,1),$ $(1,1),$
 $(-1,0),$ $(0,-1),$ $(-1,-1);$

the first row is the positive roots while the second row is the negative roots.

The Cartan matrix for A_3 is given by

$$1 \underbrace{2}_{\bullet} 3 \qquad A_{\Gamma} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

The Cartan matrix for A_3 is given by

$$1 \underbrace{2}_{\bullet} 3 \qquad A_{\Gamma} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

The form is

$$B(x,x) = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3.$$

The positive roots are

(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,1,1)

(and the negative roots are their negations).

Let Q be a quiver whose vertices are labeled $1, \ldots, n$. Let $V = (V_1, \ldots, V_n)$ be a representation of Q. The *dimension vector* of this representation is

 $d(V) = (\dim V_1, \ldots, \dim V_n).$

Theorem (Gabriel)

Let Q be a Dynkin quiver. Then the dimension vector of any indecomposable representation is a positive root with respect to B. Further, for any positive root α there is exactly one indecomposable representation with dimension vector α .

• To see Gabriel's theorem in action, consider representations of A_2 .

- To see Gabriel's theorem in action, consider representations of A_2 .
- Recall the three indecomposable representations for A_2 :

- To see Gabriel's theorem in action, consider representations of A_2 .
- Recall the three indecomposable representations for A_2 :

• And here are the three positive roots for A_2 :

(1, 0), (0, 1), (1, 1).

• Notice how these sets match up!

• We can also consider representations of A_3 .

Gabriel's theorem on A_3

- We can also consider representations of A_3 .
- Recall the six indecomposable representations for A_3 :

Gabriel's theorem on A_3

- We can also consider representations of A_3 .
- Recall the six indecomposable representations for A_3 :

• And here are the six positive roots for A_3 :

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1).

• These sets also match up!

We would like to thank

- Sasha Utiralova
- MIT PRIMES

• Tomruen, Wikimedia Commons, https://commons.wikimedia.org/wiki/File: Simply_Laced_Dynkin_Diagrams.svg

Pavel Etingof. Introduction to representation theory. American Mathematical Society, 2011.