Galois Theory and the Insolvability of the Quintic

Joshua Guo Andrew Lee Karthik Seetharaman Mentor: Chun Hong Lo

May 22, 2022

Joshua Guo Andrew Lee Karthik Seetharama

Galois theory

- Fields and Galois Groups
- 2 Galois correspondence
- Insolvability of the quintic
- 4 Acknowledgements

イロト イボト イヨト イヨト

э

The central concept of Galois theory is a field:

イロト イポト イヨト イヨト

э

The central concept of Galois theory is a field:

Definition

A **field** is a set F, endowed with addition (+) and multiplication (\cdot) for which the following "field axioms" hold:

 Multiplication and addition are associative (a + (b + c) = (a + b) + c for a, b, c ∈ F) and commutative (a + b = b + a for a, b ∈ F).

< □ > < □ > < □ > < □ > < □ > < □ >

The central concept of Galois theory is a field:

Definition

A **field** is a set F, endowed with addition (+) and multiplication (\cdot) for which the following "field axioms" hold:

- Multiplication and addition are associative (a + (b + c) = (a + b) + c for a, b, c ∈ F) and commutative (a + b = b + a for a, b ∈ F).
- Output Description (2010)
 Output Description (2010)
 I ∈ F. These are distinct.

3/19

< □ > < □ > < □ > < □ > < □ > < □ >

The central concept of Galois theory is a field:

Definition

A **field** is a set F, endowed with addition (+) and multiplication (\cdot) for which the following "field axioms" hold:

- Multiplication and addition are associative (a + (b + c) = (a + b) + c for a, b, c ∈ F) and commutative (a + b = b + a for a, b ∈ F).
- Output Provide the analysis of the exists an additive identity 0 ∈ F and a multiplicative identity 1 ∈ F. These are distinct.
- So For all $a \in F$, there exists $-a \in F$ such that a + (-a) = 0.

イロト イヨト イヨト ・

The central concept of Galois theory is a field:

Definition

A **field** is a set F, endowed with addition (+) and multiplication (\cdot) for which the following "field axioms" hold:

- Multiplication and addition are associative (a + (b + c) = (a + b) + c for a, b, c ∈ F) and commutative (a + b = b + a for a, b ∈ F).
- ② There exists an additive identity 0 ∈ F and a multiplicative identity 1 ∈ F. These are distinct.
- So For all $a \in F$, there exists $-a \in F$ such that a + (-a) = 0.
- For all $a \neq 0 \in F$, there exists $\frac{1}{a} \in F$ such that $a \cdot \frac{1}{a} = 1$.

The central concept of Galois theory is a field:

Definition

A **field** is a set F, endowed with addition (+) and multiplication (\cdot) for which the following "field axioms" hold:

- Multiplication and addition are associative (a + (b + c) = (a + b) + c for a, b, c ∈ F) and commutative (a + b = b + a for a, b ∈ F).
- ② There exists an additive identity 0 ∈ F and a multiplicative identity 1 ∈ F. These are distinct.
- So For all $a \in F$, there exists $-a \in F$ such that a + (-a) = 0.
- For all $a \neq 0 \in F$, there exists $\frac{1}{a} \in F$ such that $a \cdot \frac{1}{a} = 1$.

$$\textbf{3} \ \textbf{a} \cdot (\textbf{b} + \textbf{c}) = \textbf{a} \cdot \textbf{b} + \textbf{a} \cdot \textbf{c} \ \text{for} \ \textbf{a}, \textbf{b}, \textbf{c} \in \textbf{F}.$$

Examples of Fields

Example

- Q
- R
- C
- $\mathbb{Z}/p\mathbb{Z}$
- Q(i)

In this presentation, we only work with subfields of $\mathbb{C}.$

イロト イボト イヨト イヨト

э

Field Extensions

Definition

If $K \subset L$ are fields, then L/K is a **field extension**. K is called a subfield of L and L is called an extension of K.

(日) (四) (日) (日) (日)

Field Extensions

Definition

If $K \subset L$ are fields, then L/K is a **field extension**. K is called a subfield of L and L is called an extension of K.

We are particularly interested in field extensions of the form $K(a_1, a_2, \ldots, a_n)$, which we define to be the smallest field containing K, a_1, a_2, \ldots, a_n .

< □ > < 同 > < 回 > < 回 > < 回 >

Field Extensions

Definition

If $K \subset L$ are fields, then L/K is a **field extension**. K is called a subfield of L and L is called an extension of K.

We are particularly interested in field extensions of the form $K(a_1, a_2, \ldots, a_n)$, which we define to be the smallest field containing K, a_1, a_2, \ldots, a_n .

Example

< ロ > < 同 > < 回 > < 回 > < 回 > <

Splitting Fields

Definition

We say a polynomial $f \in K[x]$ splits over the field *L* if all of its roots lie in *L*.

(日) (四) (日) (日) (日)

Splitting Fields

Definition

We say a polynomial $f \in K[x]$ splits over the field L if all of its roots lie in L.

Definition

We say L is a **splitting field** for f(x) over K if L if f(x) splits over L and L is the smallest such field. If

$$f(x) = c(x - a_1)(x - a_2) \cdots (x - a_n), a_i \in L,$$

then this is equivalent to $L = K(a_1, a_2, \ldots, a_n)$.

6/19

- 4 回 ト 4 ヨ ト 4 ヨ ト

Splitting Fields

Definition

We say a polynomial $f \in K[x]$ splits over the field L if all of its roots lie in L.

Definition

We say L is a **splitting field** for f(x) over K if L if f(x) splits over L and L is the smallest such field. If

$$f(x) = c(x - a_1)(x - a_2) \cdots (x - a_n), a_i \in L,$$

then this is equivalent to $L = K(a_1, a_2, \ldots, a_n)$.

Example

The polynomial $f(x) = x^3 - 2$ does not split in \mathbb{R} since it has two complex roots. Its splitting field is $\mathbb{Q}(e^{\frac{2\pi i}{3}}), \sqrt[3]{2}$.

Definition

An extension L/K is **normal** if, for all irreducible polynomials $p \in K[x]$, if p has one root in L, then p has all its roots in L.

・ロト ・四ト・ モン・ モン

Definition

An extension L/K is **normal** if, for all irreducible polynomials $p \in K[x]$, if p has one root in L, then p has all its roots in L.

Theorem

An extension L/K is normal if and only if there exists some polynomial $p \in K[x]$ such that L is the splitting field for p over K.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

An extension L/K is **normal** if, for all irreducible polynomials $p \in K[x]$, if p has one root in L, then p has all its roots in L.

Theorem

An extension L/K is normal if and only if there exists some polynomial $p \in K[x]$ such that L is the splitting field for p over K.

Example

C is a normal extension of R since it is the splitting field for the polynomial x² + 1 over R.

A D N A B N A B N A B N

э

Definition

An extension L/K is **normal** if, for all irreducible polynomials $p \in K[x]$, if p has one root in L, then p has all its roots in L.

Theorem

An extension L/K is normal if and only if there exists some polynomial $p \in K[x]$ such that L is the splitting field for p over K.

Example

- C is a normal extension of ℝ since it is the splitting field for the polynomial x² + 1 over ℝ.
- Q(³√2) is not a normal extension of Q since the polynomial x³ 2 does not have all its roots in Q(³√2).

イロト イポト イヨト イヨト

э

The Galois Group

We care about all this because, for normal field extensions containing \mathbb{Q} , we can associate a useful group known as the **Galois group**.

< □ > < □ > < □ > < □ > < □ > < □ >

The Galois Group

We care about all this because, for normal field extensions containing \mathbb{Q} , we can associate a useful group known as the **Galois group**.

Definition

Given a normal field extension L/K, define the group Gal(L/K) to be the set of automorphisms $\phi : L \to L$ such that $\phi(k) = k$ for all $k \in K$ under the operation of composition.

The Galois Group

We care about all this because, for normal field extensions containing \mathbb{Q} , we can associate a useful group known as the **Galois group**.

Definition

Given a normal field extension L/K, define the group Gal(L/K) to be the set of automorphisms $\phi : L \to L$ such that $\phi(k) = k$ for all $k \in K$ under the operation of composition.

Example

The Galois group $Gal(\mathbb{C}/\mathbb{R}) = C_2$ since the only automorphisms of \mathbb{C} that fix \mathbb{R} are the identity and complex conjugation.

< □ > < □ > < □ > < □ > < □ > < □ >

Fundamental Theorem of Galois Theory

Theorem

Let L/K be finite and Galois and G = Gal(L/K). Let $\mathcal{F} = \{K \subseteq M \subseteq L \text{ subfields}\}, \mathcal{G} = \{H \subseteq G \text{ subgroups}\}$. Consider two maps $\Phi : \mathcal{G} \to \mathcal{F}, \Gamma : \mathcal{F} \to \mathcal{G}$.

$$\Phi(H) = \{\lambda \in L : h(\lambda) = \lambda \text{ for all } h \in H\}$$

$$\Gamma(M) = \{g \in G : g(m) = m ext{ for all } m \in M\}$$

The Fundamental Theorem of Galois Theory outlines a correspondence between the subfields of L containing K and the subgroups of G.

Joshua Guo Andrew Lee Karthik Seetharama

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let $K = \mathbb{Q}$ and L be the splitting field of $f(x) = x^3 - 2$, which has roots $\alpha, \omega \alpha, \omega^2 \alpha$ for $\alpha = \sqrt[3]{2}$ and $\omega = e^{2\pi i/3}$. Then, $L = \mathbb{Q}(\alpha, \omega)$ and $[L : \mathbb{Q}] = 6$. The Fundamental Theorem of Galois Theory tells us that $|\text{Gal}(L/\mathbb{Q})| = 6$.

Let $K = \mathbb{Q}$ and L be the splitting field of $f(x) = x^3 - 2$, which has roots $\alpha, \omega \alpha, \omega^2 \alpha$ for $\alpha = \sqrt[3]{2}$ and $\omega = e^{2\pi i/3}$. Then, $L = \mathbb{Q}(\alpha, \omega)$ and $[L:\mathbb{Q}] = 6$. The Fundamental Theorem of Galois Theory tells us that $|\operatorname{Gal}(L/\mathbb{O})| = 6.$

It is known that the every automorphism in $Gal(L/\mathbb{Q})$ maintains a bijection from the roots of f(x) to itself. All of the 6 permutations of the roots must be valid since $|Gal(L/\mathbb{Q})| = 6$. It then follows that $Gal(L/\mathbb{Q}) \cong S_3$. Each automorphism corresponds with a permutation of the roots.

Let $K = \mathbb{Q}$ and L be the splitting field of $f(x) = x^3 - 2$, which has roots $\alpha, \omega \alpha, \omega^2 \alpha$ for $\alpha = \sqrt[3]{2}$ and $\omega = e^{2\pi i/3}$. Then, $L = \mathbb{Q}(\alpha, \omega)$ and $[L:\mathbb{Q}] = 6$. The Fundamental Theorem of Galois Theory tells us that $|\operatorname{Gal}(L/\mathbb{O})| = 6.$

It is known that the every automorphism in $Gal(L/\mathbb{Q})$ maintains a bijection from the roots of f(x) to itself. All of the 6 permutations of the roots must be valid since $|Gal(L/\mathbb{Q})| = 6$. It then follows that $Gal(L/\mathbb{Q}) \cong S_3$. Each automorphism corresponds with a permutation of the roots.

For example, permutation (231) corresponds to the automorphism defined by $\alpha \to \omega \alpha, \omega \alpha \to \omega^2 \alpha, \omega^2 \alpha \to \alpha$, which gives $\omega \to \omega$.

This gives the following correspondence, where $\alpha_1, \alpha_2, \alpha_3$ are the roots of f(x).

This gives the following correspondence, where $\alpha_1, \alpha_2, \alpha_3$ are the roots of f(x).

For example, let us look at the correspondence between $\langle \langle 123 \rangle \rangle$ and $\mathbb{Q}(\omega)$. $\langle \langle 123 \rangle \rangle$ contains permutations e, (123), (132). Clearly, permutation e fixes all $\lambda \in L$. Permutation (123) has $\alpha \to \omega \alpha, \omega \alpha \to \omega^2 \alpha, \omega^2 \alpha \to \alpha$, which gives $\omega \to \omega$. We can then see that $\mathbb{Q}(\omega)$ is the set of elements that are fixed. Similar for (132).

Fundamental Theorem of Galois Theory (cont.)

Theorem

- If $M \in \mathcal{F}$ corresponds to $H \in \mathcal{G}$, then H = Gal(L/M)
- H ∈ G is normal if and only if for the corresponding M ∈ F, M/K is normal, and in this case Gal(M/K) = G/H

< □ > < □ > < □ > < □ > < □ > < □ >

Fundamental Theorem of Galois Theory (cont.)

Theorem

- If $M \in \mathcal{F}$ corresponds to $H \in \mathcal{G}$, then H = Gal(L/M)
- H ∈ G is normal if and only if for the corresponding M ∈ F, M/K is normal, and in this case Gal(M/K) = G/H

Proof outline

- Field extensions by radicals
- Solvable Galois groups
- The splitting field of $X^5 6X + 3$

э

イロト イポト イヨト イヨト

Field extensions by radicals

Definition

We say that the field extension F/E is an *extension by radicals* if there is a series of fields

$$E = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = F$$

such that, for each *i*, $F_{i+1} = F_i(\alpha_i)$, where α_i is an element of F_{i+1} such that $\alpha_i^{n_i} \in F_i$ for some positive integer n_i .

- 4 回 ト 4 ヨ ト 4 ヨ ト

Field extensions by radicals

Definition

We say that the field extension F/E is an *extension by radicals* if there is a series of fields

$$E = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = F$$

such that, for each *i*, $F_{i+1} = F_i(\alpha_i)$, where α_i is an element of F_{i+1} such that $\alpha_i^{n_i} \in F_i$ for some positive integer n_i .

Clearly, an algebraic number r is expressible by radicals iff $\mathbb{Q}(r)/\mathbb{Q}$ is an extension by radicals.

イロト イヨト イヨト ・

Solvable Galois groups

Definition

We say that a group G is *solvable* iff there is a sequence of groups

$$\{e\} \subseteq H_n \subseteq H_{n-1} \subseteq \cdots \subseteq H_1 = G$$

such that, for all *i*, $H_{i+1} \triangleleft H_i$ and H_i/H_{i+1} is abelian.

< □ > < □ > < □ > < □ > < □ > < □ >

Solvable Galois groups

Definition

We say that a group G is *solvable* iff there is a sequence of groups

$$\{e\} \subseteq H_n \subseteq H_{n-1} \subseteq \cdots \subseteq H_1 = G$$

such that, for all *i*, $H_{i+1} \triangleleft H_i$ and H_i/H_{i+1} is abelian.

We can relate this concept to field extensions by radicals as follows:

Lemma

Suppose F/E is a finite and Galois field extension which is also an extension by radicals. Then Gal(F/E) is solvable.

Now we only need to study $Gal(\mathbb{Q}(r)/\mathbb{Q})$ - another improvement!

・ロト ・ 同ト ・ ヨト ・ ヨト

Let

$$E = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = F$$

be some series of fields that show that F/E is an extension by radicals. WLOG assume all the n_i are prime.

э

イロト イヨト イヨト

Let

$$E = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = F$$

be some series of fields that show that F/E is an extension by radicals. WLOG assume all the n_i are prime. Letting $N := \prod_i n_i$, we can consider the tower of fields

$$K = F_0(\zeta_N) \subseteq F_1(\zeta_N) \subseteq \cdots \subseteq F_n(\zeta_N) = L$$

where $K := E(\zeta_N), L := F(\zeta_N).$

3

イロト イヨト イヨト ・

Let

$$E = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = F$$

be some series of fields that show that F/E is an extension by radicals. WLOG assume all the n_i are prime. Letting $N := \prod_i n_i$, we can consider the tower of fields

$$K = F_0(\zeta_N) \subseteq F_1(\zeta_N) \subseteq \cdots \subseteq F_n(\zeta_N) = L$$

where $K := E(\zeta_N), L := F(\zeta_N)$. Letting $G := \text{Gal}(F(\zeta_N)/E(\zeta_N))$ and $G_i := \text{Gal}(F(\zeta_N)/F_i(\zeta_N))$, we have

$$\{e\} = G_n \lhd G_{n-1} \lhd \cdots \lhd G_0 = G,$$

so G is solvable.

16/19

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

l et

$$E = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = F$$

be some series of fields that show that F/E is an extension by radicals. WLOG assume all the n_i are prime. Letting $N := \prod_i n_i$, we can consider the tower of fields

$$K = F_0(\zeta_N) \subseteq F_1(\zeta_N) \subseteq \cdots \subseteq F_n(\zeta_N) = L$$

where $K := E(\zeta_N), L := F(\zeta_N)$. Letting $G := \operatorname{Gal}(F(\zeta_N)/E(\zeta_N))$ and $G_i := \operatorname{Gal}(F(\zeta_N)/F_i(\zeta_N))$, we have

$$\{e\} = G_n \lhd G_{n-1} \lhd \cdots \lhd G_0 = G,$$

so G is solvable. Since Gal(L/E)/Gal(L/K) = Gal(K/E) is abelian, we find that Gal(L/E) is also solvable.

Let

$$E = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = F$$

be some series of fields that show that F/E is an extension by radicals. WLOG assume all the n_i are prime. Letting $N := \prod_i n_i$, we can consider the tower of fields

$$\mathcal{K} = \mathcal{F}_0(\zeta_N) \subseteq \mathcal{F}_1(\zeta_N) \subseteq \cdots \subseteq \mathcal{F}_n(\zeta_N) = L$$

where $K := E(\zeta_N), L := F(\zeta_N)$. Letting $G := \text{Gal}(F(\zeta_N)/E(\zeta_N))$ and $G_i := \text{Gal}(F(\zeta_N)/F_i(\zeta_N))$, we have

$$\{e\} = G_n \lhd G_{n-1} \lhd \cdots \lhd G_0 = G,$$

so G is solvable. Since $\operatorname{Gal}(L/E)/\operatorname{Gal}(L/K) = \operatorname{Gal}(K/E)$ is abelian, we find that $\operatorname{Gal}(L/E)$ is also solvable. Finally, since $\operatorname{Gal}(L/E)/\operatorname{Gal}(L/F) = \operatorname{Gal}(F/E)$, so $\operatorname{Gal}(F/E)$ is solvable and we are done.

Joshua Guo Andrew Lee Karthik Seetharamar

16/19

Now we give an example of a quintic equation whose roots are not expressible by radicals: $X^5 - 6X + 3 = 0$. Let $p(X) := X^5 - 6X + 3$ and L the splitting field of p(X) over \mathbb{Q} .

Now we give an example of a quintic equation whose roots are not expressible by radicals: $X^5 - 6X + 3 = 0$. Let $p(X) := X^5 - 6X + 3$ and L the splitting field of p(X) over \mathbb{Q} . What do we know about $Gal(L/\mathbb{Q})$?

• It's a subgroup of S_5

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Now we give an example of a quintic equation whose roots are not expressible by radicals: $X^5 - 6X + 3 = 0$. Let $p(X) := X^5 - 6X + 3$ and L the splitting field of p(X) over \mathbb{Q} . What do we know about $Gal(L/\mathbb{Q})$?

- It's a subgroup of S_5
- It contains a 5-cycle

Now we give an example of a quintic equation whose roots are not expressible by radicals: $X^5 - 6X + 3 = 0$. Let $p(X) := X^5 - 6X + 3$ and L the splitting field of p(X) over \mathbb{Q} . What do we know about $Gal(L/\mathbb{Q})$?

- It's a subgroup of S_5
- It contains a 5-cycle
- It contains complex conjugation, a transposition

This is actually enough to deduce $Gal(L/\mathbb{Q}) = S_5$.

< ロ > < 同 > < 三 > < 三 > 、

Notice that S_1, S_2, S_3, S_4 are solvable, but S_5 and so on are not solvable.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Notice that S_1, S_2, S_3, S_4 are solvable, but S_5 and so on are not solvable. We conclude:

• S_5 is not solvable

3

イロト 不得 トイヨト イヨト

Notice that S_1, S_2, S_3, S_4 are solvable, but S_5 and so on are not solvable. We conclude:

- S_5 is not solvable
- ... so $Gal(L/\mathbb{Q})$ is not solvable

3

イロト イヨト イヨト --

Notice that S_1, S_2, S_3, S_4 are solvable, but S_5 and so on are not solvable. We conclude:

- S_5 is not solvable
- ... so $Gal(L/\mathbb{Q})$ is not solvable
- ... so L/\mathbb{Q} is not an extension by radicals

3

イロト イヨト イヨト ・

Notice that S_1, S_2, S_3, S_4 are solvable, but S_5 and so on are not solvable. We conclude:

- S_5 is not solvable
- ... so $Gal(L/\mathbb{Q})$ is not solvable
- ... so L/\mathbb{Q} is not an extension by radicals
- ... so the roots of p(X) are not expressible by radicals.

QED.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Acknowledgements

We thank

- Our mentor Chun Hong Lo for his valuable guidance.
- Professor Pavel Etingof, Dr. Slava Gerovitch, Dr. Tanya Khovanova, the MIT Math Department, and the MIT PRIMES program, for providing us with this opportunity.
- You for listening.

< □ > < 同 > < 回 > < 回 > < 回 >