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Fields and Galois Groups

Introducing Fields

The central concept of Galois theory is a field:

Definition

A field is a set F , endowed with addition (+) and multiplication (·) for
which the following ”field axioms” hold:

1 Multiplication and addition are associative (a+ (b + c) = (a+ b) + c
for a, b, c ∈ F ) and commutative (a+ b = b + a for a, b ∈ F ).

2 There exists an additive identity 0 ∈ F and a multiplicative identity
1 ∈ F . These are distinct.

3 For all a ∈ F , there exists −a ∈ F such that a+ (−a) = 0.

4 For all a ̸= 0 ∈ F , there exists 1
a ∈ F such that a · 1

a = 1.

5 a · (b + c) = a · b + a · c for a, b, c ∈ F .
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Fields and Galois Groups

Examples of Fields

Example

Q
R
C
Z/pZ
Q(i)

In this presentation, we only work with subfields of C.
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Fields and Galois Groups

Field Extensions

Definition

If K ⊂ L are fields, then L/K is a field extension. K is called a subfield
of L and L is called an extension of K .

We are particularly interested in field extensions of the form
K (a1, a2, . . . , an), which we define to be the smallest field containing
K , a1, a2, . . . , an.

Example

1 Q(i)

2 R(i) = C
3 Q(

√
2,
√
3)
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Fields and Galois Groups

Splitting Fields

Definition

We say a polynomial f ∈ K [x ] splits over the field L if all of its roots lie in
L.

Definition

We say L is a splitting field for f (x) over K if L if f (x) splits over L and
L is the smallest such field. If

f (x) = c(x − a1)(x − a2) · · · (x − an), ai ∈ L,

then this is equivalent to L = K (a1, a2, . . . , an).

Example

The polynomial f (x) = x3 − 2 does not split in R since it has two complex

roots. Its splitting field is Q(e
2πi
3 ), 3

√
2).
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Fields and Galois Groups

Normal Extensions

Definition

An extension L/K is normal if, for all irreducible polynomials p ∈ K [x ], if
p has one root in L, then p has all its roots in L.

Theorem

An extension L/K is normal if and only if there exists some polynomial
p ∈ K [x ] such that L is the splitting field for p over K .

Example

1 C is a normal extension of R since it is the splitting field for the
polynomial x2 + 1 over R.

2 Q( 3
√
2) is not a normal extension of Q since the polynomial x3 − 2

does not have all its roots in Q( 3
√
2).
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Fields and Galois Groups

The Galois Group

We care about all this because, for normal field extensions containing Q,
we can associate a useful group known as the Galois group.

Definition

Given a normal field extension L/K , define the group Gal(L/K ) to be the
set of automorphisms ϕ : L → L such that ϕ(k) = k for all k ∈ K under
the operation of composition.

Example

The Galois group Gal(C/R) = C2 since the only automorphisms of C that
fix R are the identity and complex conjugation.
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Galois correspondence

Fundamental Theorem of Galois Theory

Theorem

Let L/K be finite and Galois and G = Gal(L/K ). Let
F = {K ⊆ M ⊆ L subfields}, G = {H ⊆ G subgroups}. Consider two
maps Φ : G → F , Γ : F → G.

Φ(H) = {λ ∈ L : h(λ) = λ for all h ∈ H}

Γ(M) = {g ∈ G : g(m) = m for all m ∈ M}

|G | = [L : K ]

Φ and Γ are order-reversing bijections.

The Fundamental Theorem of Galois Theory outlines a correspondence
between the subfields of L containing K and the subgroups of G .
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Galois correspondence

Galois Correspondence Example

Let K = Q and L be the splitting field of f (x) = x3 − 2, which has roots
α, ωα, ω2α for α = 3

√
2 and ω = e2πi/3. Then, L = Q(α, ω) and

[L : Q] = 6. The Fundamental Theorem of Galois Theory tells us that
|Gal(L/Q)| = 6.

It is known that the every automorphism in Gal(L/Q) maintains a bijection
from the roots of f (x) to itself. All of the 6 permutations of the roots
must be valid since |Gal(L/Q)| = 6. It then follows that Gal(L/Q) ∼= S3.
Each automorphism corresponds with a permutation of the roots.

For example, permutation (231) corresponds to the automorphism defined
by α → ωα, ωα → ω2α, ω2α → α, which gives ω → ω.

Joshua Guo Andrew Lee Karthik Seetharaman Mentor: Chun Hong LoGalois theory May 22, 2022 10 / 19
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Galois correspondence

Galois Correspondence Example

This gives the following correspondence, where α1, α2, α3 are the roots of
f (x).

For example, let us look at the correspondence between ⟨⟨123⟩⟩ and Q(ω).
⟨⟨123⟩⟩ contains permutations e, (123), (132). Clearly, permutation e fixes
all λ ∈ L. Permutation (123) has α → ωα, ωα → ω2α, ω2α → α, which
gives ω → ω. We can then see that Q(ω) is the set of elements that are
fixed. Similar for (132).
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Galois correspondence

Fundamental Theorem of Galois Theory (cont.)

Theorem

If M ∈ F corresponds to H ∈ G, then H = Gal(L/M)

H ∈ G is normal if and only if for the corresponding M ∈ F , M/K is
normal, and in this case Gal(M/K ) = G/H
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Galois correspondence

Fundamental Theorem of Galois Theory (cont.)
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Insolvability of the quintic

Proof outline

Field extensions by radicals

Solvable Galois groups

The splitting field of X 5 − 6X + 3
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Insolvability of the quintic

Field extensions by radicals

Definition

We say that the field extension F/E is an extension by radicals if there is
a series of fields

E = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F

such that, for each i , Fi+1 = Fi (αi ), where αi is an element of Fi+1 such
that αni

i ∈ Fi for some positive integer ni .

Clearly, an algebraic number r is expressible by radicals iff Q(r)/Q is an
extension by radicals.
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Insolvability of the quintic

Solvable Galois groups

Definition

We say that a group G is solvable iff there is a sequence of groups

{e} ⊆ Hn ⊆ Hn−1 ⊆ · · · ⊆ H1 = G

such that, for all i , Hi+1 ◁ Hi and Hi/Hi+1 is abelian.

We can relate this concept to field extensions by radicals as follows:

Lemma

Suppose F/E is a finite and Galois field extension which is also an
extension by radicals. Then Gal(F/E ) is solvable.

Now we only need to study Gal(Q(r)/Q) - another improvement!
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Insolvability of the quintic

Proof of the lemma

Let
E = F0 ⊆ F1 ⊆ · · · ⊆ Fn = F

be some series of fields that show that F/E is an extension by radicals.
WLOG assume all the ni are prime.

Letting N :=
∏

i ni , we can consider
the tower of fields

K = F0(ζN) ⊆ F1(ζN) ⊆ · · · ⊆ Fn(ζN) = L

where K := E (ζN), L := F (ζN). Letting G := Gal(F (ζN)/E (ζN)) and
Gi := Gal(F (ζN)/Fi (ζN)), we have

{e} = Gn ◁ Gn−1 ◁ · · ·◁ G0 = G ,

so G is solvable. Since Gal(L/E )/Gal(L/K ) = Gal(K/E ) is abelian, we
find that Gal(L/E ) is also solvable. Finally, since
Gal(L/E )/Gal(L/F ) = Gal(F/E ), so Gal(F/E ) is solvable and we are
done.

Joshua Guo Andrew Lee Karthik Seetharaman Mentor: Chun Hong LoGalois theory May 22, 2022 16 / 19
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be some series of fields that show that F/E is an extension by radicals.
WLOG assume all the ni are prime. Letting N :=

∏
i ni , we can consider

the tower of fields

K = F0(ζN) ⊆ F1(ζN) ⊆ · · · ⊆ Fn(ζN) = L

where K := E (ζN), L := F (ζN). Letting G := Gal(F (ζN)/E (ζN)) and
Gi := Gal(F (ζN)/Fi (ζN)), we have

{e} = Gn ◁ Gn−1 ◁ · · ·◁ G0 = G ,

so G is solvable. Since Gal(L/E )/Gal(L/K ) = Gal(K/E ) is abelian, we
find that Gal(L/E ) is also solvable. Finally, since
Gal(L/E )/Gal(L/F ) = Gal(F/E ), so Gal(F/E ) is solvable and we are
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Insolvability of the quintic

The splitting field of X 5 − 6X + 3 has Galois group S5...

Now we give an example of a quintic equation whose roots are not
expressible by radicals: X 5 − 6X + 3 = 0. Let p(X ) := X 5 − 6X + 3 and L
the splitting field of p(X ) over Q.

What do we know about Gal(L/Q)?

It’s a subgroup of S5

It contains a 5-cycle

It contains complex conjugation, a transposition

This is actually enough to deduce Gal(L/Q) = S5.
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Insolvability of the quintic

... and S5 is not solvable!

Notice that S1,S2, S3, S4 are solvable, but S5 and so on are not solvable.

We conclude:

S5 is not solvable

... so Gal(L/Q) is not solvable

... so L/Q is not an extension by radicals

... so the roots of p(X ) are not expressible by radicals.

QED.
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