Introduction to Cryptography

Ayelet Yablon and Daniela Yablon

May 19, 2022

Introduction to Number Theory

Modulo - Two numbers a and b are congruent to each other $\bmod c$ if they leave the same remainder after dividing by c.

Modular Arithmetic

- If $x \equiv y \bmod n$, then $a x \equiv$ ay $\bmod n$
- If a is coprime to a number n, and b is coprime to n, then $a b$ is coprime to n
- If a number is coprime to a number n, then reducing it by n yields a number coprime to n

Introduction to Group Theory

A group is defined as a set of elements with a binary operation that satisfy the four group axioms.

Group Axioms

- Associativity - given three real numbers a, b, and c,

$$
a \star(b \star c)=(a \star b) \star c
$$

- Closure $-a \in G$ and $b \in G, a \star b \in G$
- Identity Existence - given group G, there exists element $i \in G$ such that $a \star i=a$
- Inverse Existence - given group G, there exists element $e \in G$ such that $a \star e=i$

Euler's Totient Function

- $\varphi(n)=\left|Z_{n}^{*}\right|=|\{a: 1 \leq a \leq n, \operatorname{gcd}(a, n)=1\}|$
- If $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$ is a product of k primes, then the size of the group Z_{n}^{*} is $\varphi(n)=\varphi\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)=\left(p_{1}-1\right)\left(p_{2}-2\right) \ldots\left(p_{k}-1\right)$
- If n is prime, then Z_{p}^{*} will contain the set of integers from 1 to $p-1$

Euler's Totient Function

- $\varphi(n)=\left|Z_{n}^{*}\right|=|\{a: 1 \leq a \leq n, \operatorname{gcd}(a, n)=1\}|$
- If $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$ is a product of k primes, then the size of the group Z_{n}^{*} is $\varphi(n)=\varphi\left(p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}\right)=\left(p_{1}-1\right)\left(p_{2}-2\right) \ldots\left(p_{k}-1\right)$
- If n is prime, then Z_{p}^{*} will contain the set of integers from 1 to $p-1$

Euler's Theorem

For two positive integers x, n, such that x, n are relatively prime $x^{\varphi(n)} \equiv 1$ $\bmod n$.

Proof

Modular Arithmetic

- If $x \equiv y \bmod n$, then $a x \equiv a y \bmod n$
- If a is coprime to a number n, and b is coprime to n, then $a b$ is coprime to n
- If a number is coprime to a number n, then reducing it by n yields a number coprime to n

Proof

Modular Arithmetic

- If $x \equiv y \bmod n$, then $a x \equiv a y \bmod n$
- If a is coprime to a number n, and b is coprime to n, then $a b$ is coprime to n
- If a number is coprime to a number n, then reducing it by n yields a number coprime to n
$A=\left\{a_{1}, a_{2}, \ldots a_{\varphi}\right\}$

Proof

Modular Arithmetic

- If $x \equiv y \bmod n$, then $a x \equiv a y \bmod n$
- If a is coprime to a number n, and b is coprime to n, then $a b$ is coprime to n
- If a number is coprime to a number n, then reducing it by n yields a number coprime to n

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, \ldots a_{\varphi}\right\} \\
& B=\left\{x \cdot a_{1}, x \cdot a_{2}, \ldots x \cdot a_{\varphi}\right\}
\end{aligned}
$$

Proof

Modular Arithmetic

- If $x \equiv y \bmod n$, then $a x \equiv a y \bmod n$
- If a is coprime to a number n, and b is coprime to n, then $a b$ is coprime to n
- If a number is coprime to a number n, then reducing it by n yields a number coprime to n

$$
\begin{aligned}
& A=\left\{a_{1}, a_{2}, \ldots a_{\varphi}\right\} \\
& B=\left\{x \cdot a_{1}, x \cdot a_{2}, \ldots x \cdot a_{\varphi}\right\} \\
& C=\left\{x \cdot a_{1}(\bmod n), x \cdot a_{2}(\bmod n), \ldots x \cdot a_{\varphi}(\bmod n)\right\}
\end{aligned}
$$

RSA - Keys

- Key - piece of information that can be used to decrypt a message
- Most encryption algorithms: n keys for someone to communicate with n people
- RSA: 1 key for someone to communicate with n people
- Public key - a key that can be accessed by the public
- Private key - a key that can be accessed only by the intended receiver of a message
- Public keys: (N, e)
- Private key: (d)

RSA - Algorithm

- Trapdoor function - modular arithmetic
- Encryption: $y \equiv x^{e} \bmod (N)$
- Decryption: $x \equiv y^{d} \bmod (N)$

