Algorithm Analysis

Zoe Siegelnickel and Palak Yadav

Table of Contents

- 1. Introduction Zoe
- 2. Time Complexity Palak
- 3. Search Algorithms brief
 - a. Linear vs Binary graph
- 4. Recursive Algorithms brief -- Palak
 - a. Intro
 - b. Fibonacci
 - c. Merge Sort
- 5. Karatsuba Palak
 - a. Naive
 - b. Algorithm Proof + Run Time

6. Akra Bazzi - Zoe

- a. Matrix Multiplication -- maybe
 - i. Strassen

Intro to Algorithm Analysis

Algorithm: A set of instructions that a computer follows and applies on input

- Input: data entered into an algorithm
- **Output:** results produced

Algorithm Analysis: How long it takes for the computer to follow these instructions

- Best measured in terms of large input sizes

Measuring Efficiency

• Can't measure time it takes to run ~ machine dependent

Need:

- Machine Independence
- How algorithm behaves as input size increase

Run Time:

of steps or operations executed Depends on input size (#elements) **Input Size:** #elements inserted in algorithm

Represented by *n*

Cases to consider:

- Worst-case
- Best-case
- average case

Big O notation O(n)

- describe the upper-bound
- worst-case scenario

Big-Omega Ω

- lower bound
- best-case scenario

Theta O

- describes best and worst case scenario.
- gives the exact bound.

Search Algorithms

Linear Search

O(n)

Linear Search: Sort through until desired element is found

Binary Search:

- Divides data set in half
- Compares target value with middle term
- Eliminates half set that does not contain T
- Repeats until T found

Binary Search

O(log₂ n)

Recursive Algorithms

- Divide the larger problem into subproblems by calling itself
- Divides until the base case is reached and performs the algorithm's objective on easily solvable inputs

Fibonacci Sequence

$$f(n) = \begin{cases} 0 & if \ n = 0 \\ 1 & if \ n = 1 \\ F(n-1) + F(n-2) & if \ n > 1 \end{cases}$$

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 ...

Each number is the sum of the previous two numbers.

Karatsuba Algorithm

- Fast Multiplication Algorithm
- Reduces time it takes to multiple 2 even *n*-digit numbers
 If odd, add zeros

Naive Method of Multiplying

- Each digit in x multiplied to each digit in y
- Total: 4 single-digit computations to find x *y
- **n² operations** (*n* → # digits in each number)

45 45 45 45 x32 x32 x32 x32

 n^2 operations \rightarrow Time Complexity $O(n^2)$

Deriving Karatsuba Algorithm

1.	Split number in half	x= 45 = 40 + 5	y = 32 = 30 + 2
		High bit: 4 = <i>a</i> Low bit: 5 = <i>b</i>	High bit: 3 = <i>c</i> Low bit: 2 = <i>d</i>
2. Another way to express multiplication			<i>xy</i> = (40 +5) × (30+2)
3. Distributive property		xy =	(40*30) + (40*2)+ (5*30) + (5*2)
		Ever	this way, still 4 computations (n ²

Karatsuba Algorithm

High bit: 4 = a	High bit: 3 = c
Low bit: 5 = <i>b</i>	Low bit: 2 = <i>d</i>

xy = (40*30) + (40*2)+ (5*30) + (5*2)

High bitsMiddle bitsLow bitsKA divides problem
into 3 sub-problems
(instead of 4)ac+(ad + bc)+bd

Karatsuba Algorithm Cont.

$$x = 45 = 40 + 5$$
 $y = 32 = 30 + 2$ High bit: $4 = a$ High bit: $3 = c$ Low bit: $5 = b$ Low bit: $2 = d$

High bits	Middle bits	Low bits
ac +	(ad + bc)	bd

Middle Term

Proof \rightarrow Gauss' Trick: (ac + ad + bc + bd) - ac - bd

Subtract high & low bits from total to find middle

NOTE: Bases of ten (zeros) can be ignored for now and added on at the end

Generalized Karatsuba Algorithm

$$x.y = (10^{n}ac + 10^{n/2}(ad + bc) + bd$$

H M L
1. Recursively compute ac High bits
2. Recursively compute bd Low bits
3. Recursively compute (a+b)(c+d) = ac+bd+ad+bc Middle bits

Gauss' Trick : (3) - (1) - (2) = ad + bc

NOTE: Bases of ten (zeros) can be ignored for now and added on at the end

Karatsuba Run Time

Total: 3 computations instead of 4

Time Complexity

$$T(n)=3T\left(rac{n}{2}
ight)+O(n).$$

$$\Thetaig(n^{\log_2 3}ig) pprox \Thetaig(n^{1.585}ig).$$

T → run time for multiplication *O(n)* → standard time for arithmetic

Akra - Bazzi

Akra Bazzi Method

Recurrence relation: expression of a term as a function of the terms before it.

$$T(x)=g(x)+\sum_{i=1}^k a_i T(b_i x+h_i(x))$$

Takes recurrence relation as input: outputs asymptotic time complexity.

$$\sum_{i=1}^k a_i b_i^p = 1$$

$$T(x) = \Theta\left(x^p\left(1 + \int_1^x \frac{g(u)}{u(p+1)}du\right)\right)$$

Strassen Algorithm

$$egin{aligned} M_1 &= (A_{11} + A_{22})(B_{11} + B_{22});\ M_2 &= (A_{21} + A_{22})B_{11};\ M_3 &= A_{11}(B_{12} - B_{22});\ M_4 &= A_{22}(B_{21} - B_{11});\ M_5 &= (A_{11} + A_{12})B_{22};\ M_6 &= (A_{21} - A_{11})(B_{11} + B_{12});\ M_7 &= (A_{12} - A_{22})(B_{21} + B_{22}), \end{aligned}$$

 $T(x) = 7T(x/2) + \Theta(n^3)$

Proof: Akra Bazzi

 $T(x) = 7T(x/2) + \Theta(n^3)$

Works Cited

Cormen, Thomas H., et al. Introduction to Algorithms. MIT Press; McGraw-Hill, 1990.

Bender, Edward A., and Williamson, Stanley G. Mathematics for Algorithm

and Systems Analysis. Courier Corporation, 2005.

Acknowledgement

We would like to express our gratitude to our mentor John Shackleton for his guidance. Thank you for all your help!

Thank you!