
Algorithm Analysis

Zoe Siegelnickel and Palak Yadav

Table of Contents

1. Introduction - Zoe
2. Time Complexity - Palak
3. Search Algorithms - brief

a. Linear vs Binary – graph
4. Recursive Algorithms - brief -- Palak

a. Intro
b. Fibonacci
c. Merge Sort

5. Karatsuba - Palak
a. Naive
b. Algorithm Proof + Run Time

6. Akra Bazzi - Zoe
a. Matrix Multiplication -- maybe

i. Strassen

Intro to Algorithm Analysis
Algorithm: A set of instructions that a computer follows and applies on input

- Input: data entered into an algorithm
- Output: results produced

Algorithm Analysis: How long it takes for the computer to follow these instructions
- Best measured in terms of large input sizes

INPUT ALGORITHM OUTPUT

Measuring Efficiency

● Can’t measure time it takes to run ~ machine dependent

Need:

● Machine Independence
● How algorithm behaves as input size increase

Run Time:
of steps or operations

executed
Depends on input size

(#elements)

Cases to consider:

○ Worst-case
○ Best-case
○ average case

Input Size:
#elements inserted in

algorithm

Represented by n

● describe the upper-bound
● worst-case scenario

● lower bound
● best-case scenario

● describes best and worst case scenario.
● gives the exact bound.

Big O notation O(n) Big-Omega Ω

Theta Θ

Search Algorithms

Linear Search

O(n)

Binary Search

O(log₂ n)

Linear Search: Sort through until
desired element is found

Binary Search:

- Divides data set in half
- Compares target value with

middle term
- Eliminates half set that does

not contain T
- Repeats until T found

Recursive Algorithms
● Divide the larger problem into subproblems by calling itself

● Divides until the base case is reached and performs the
algorithm’s objective on easily solvable inputs

Fibonacci Sequence

Karatsuba Algorithm

● Fast Multiplication Algorithm

● Reduces time it takes to multiple 2 even n-digit numbers
○ If odd, add zeros

Naive Method of Multiplying

● Each digit in x multiplied to each digit in y
● Total: 4 single-digit computations to find x *y
● n² operations (n → # digits in each number)

n² operations → Time Complexity O(n²)

Deriving Karatsuba Algorithm

x= 45 = 40 + 5 y = 32 = 30 + 2

High bit: 4 = a
Low bit: 5 = b

High bit: 3 = c
Low bit: 2 = d

xy = (40 +5) x (30+2)

xy = (40*30) + (40*2)+ (5*30) + (5*2)

Even this way, still 4 computations (n²)
n → #digits in each number

1. Split number
in half

2. Another way to express
multiplication

3. Distributive property

Karatsuba Algorithm

x= 45 = 40 + 5 y = 32 = 30 + 2

High bit: 4 = a
Low bit: 5 = b

High bit: 3 = c
Low bit: 2 = d

xy = (40*30) + (40*2)+ (5*30) + (5*2)

KA divides problem
into 3 sub-problems

(instead of 4)

(40*30) (40*2 + 5*30) (5*2)

High bits Middle bits Low bits

ac (ad + bc) bd+

+ +

+

x= 45 = 40 + 5 y = 32 = 30 + 2

High bit: 4 = a
Low bit: 5 = b

High bit: 3 = c
Low bit: 2 = d

xy = (40*30) + (40*2)+ (5*30) + (5*2)

(40*30) (40*2 + 5*30) (5*2)

High bits Middle bits Low bits

ac (ad + bc) bd+

+ +

+

Middle Term

(ad + bc) = (a + b)(c + d) − ac − bd

Proof → Gauss’ Trick:

(ac + ad + bc + bd) - ac - bd

NOTE: Bases of ten (zeros) can be ignored
for now and added on at the end

Karatsuba Algorithm Cont.

Subtract high & low bits from total to find middle

Generalized Karatsuba Algorithm

High bits
Low bits

Middle bits

H M L

NOTE: Bases of ten (zeros) can be ignored
for now and added on at the end

Karatsuba Run Time

(4*3) (4+2) * (5+3) (5*2)

High bits Middle bits Low bits

ac (a + b)(c + d) − ac − bd bd

+ +

n/2 * n/2
1 single-digit computation

(n/2) * (n/2)
1 single-digit computation

n/2 * n/2

Total: 3 computations instead of 4

1 single-digit computation

Time Complexity

T → run time for multiplication
O(n) → standard time for arithmetic

Akra - Bazzi

Akra Bazzi Method

Recurrence relation: expression of a term as a function of the terms before it.

Takes recurrence relation as input: outputs asymptotic time complexity.

Strassen
Algorithm

Strassen Algorithm

T(x) = 7T(x/2) + Θ(n³)

Proof: Akra Bazzi

a = 7
b = ½

p = log 7

T(x) = 7T(x/2) + Θ(n³)

Works Cited

Cormen, Thomas H., et al. Introduction to Algorithms. MIT Press; McGraw-Hill, 1990.

Bender, Edward A., and Williamson, Stanley G. Mathematics for Algorithm

and Systems Analysis. Courier Corporation, 2005.

Acknowledgement
We would like to express our gratitude to our mentor John Shackleton
for his guidance. Thank you for all your help!

Thank you!

