Algorithm Analysis

Zoe Siegelnickel and Palak Yadav

Table of Contents

1. Introduction-Zoe
2. Time Complexity - Palak
3. Search Algorithms - brief
a. Linear vs Binary - graph
4. Recursive Algorithms - brief -- Palak
a. Intro
b. Fibonacci
c. Merge Sort
5. Karatsuba - Palak
a. Naive
b. Algorithm Proof + Run Time
6. Akra Bazzi - Zoe
a. Matrix Multiplication -- maybe
i. Strassen

Intro to Algorithm Analysis

Algorithm: A set of instructions that a computer follows and applies on input

- Input: data entered into an algorithm
- Output: results produced

Algorithm Analysis: How long it takes for the computer to follow these instructions

- Best measured in terms of large input sizes

Measuring Efficiency

- Can't measure time it takes to run ~ machine dependent

Need:

- Machine Independence
- How algorithm behaves as input size increase

Run Time:

\# of steps or operations
executed
Depends on input size (\#elements)

Input Size:

\#elements inserted in
algorithm
Represented by n

Cases to consider:

- Worst-case
- Best-case
- average case

Big O notation O(n)

- describe the upper-bound
- worst-case scenario

Big-Omega Ω

- lower bound
- best-case scenario

Theta Θ

- describes best and worst case scenario.
- gives the exact bound.

Search Algorithms

Linear Search

Linear Search: Sort through until desired element is found

Binary Search:

- Divides data set in half
- Compares target value with middle term
- Eliminates half set that does not contain T

Binary Search

$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$

Recursive Algorithms

- Divide the larger problem into subproblems by calling itself
- Divides until the base case is reached and performs the algorithm's objective on easily solvable inputs

Fibonacci Sequence

$f(n)=\left\{\begin{array}{lrl}0 & \text { if } n=0 \\ 1 & \text { if } & n=1 \\ F(n-1)+F(n-2) & \text { if } n>1\end{array}\right.$
$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987 \ldots$

Each number is the sum of the previous two numbers.

Karatsuba Algorithm

- Fast Multiplication Algorithm
- Reduces time it takes to multiple 2 even n-digit numbers - If odd, add zeros

Naive Method of Multiplying

- Each digit in x multiplied to each digit in y
- Total: 4 single-digit computations to find x *y
- \mathbf{n}^{2} operations ($n \rightarrow \#$ digits in each number)

n^{2} operations \rightarrow Time Complexity $O\left(n^{2}\right)$

Deriving Karatsuba Algorithm

1. Split number in half
$x=45=40+5$

High bit: $4=a$
Low bit: $5=b$

$$
y=32=30+2
$$

High bit: $3=c$
Low bit: $2=d$
2. Another way to express multiplication
3. Distributive property

$$
x y=(40+5) \times(30+2)
$$

$$
x y=(40 * 30)+(40 * 2)+(5 * 30)+(5 * 2)
$$

Even this way, still 4 computations $\left(n^{2}\right)$
$n \rightarrow$ \#digits in each number

Karatsuba Algorithm

$$
x=45=40+5
$$

$$
y=32=30+2
$$

High bit: $4=a$ Low bit: $5=b$

High bit: $3=c$
Low bit: $2=d$

$$
x y=(40 * 30)+(40 * 2)+(5 * 30)+(5 * 2)
$$

$(40 * 30)+\left(40 * 2+5^{*} 30\right)+\left(5^{*} 2\right)$

KA divides problem into 3 sub-problems
(instead of 4)

Karatsuba Algorithm Cont.

$$
x=45=40+5
$$

$$
y=32=30+2
$$

High bit: $3=c$
Low bit: $2=d$

$$
x y=(40 * 30)+(40 * 2)+(5 * 30)+(5 * 2)
$$

Proof \rightarrow Gauss' Trick:
$(2 b c+a d+b c+b d)-a c-b d$

Subtract high \& low bits from total to find middle

High bits $a c$

Middle Term

$$
(a d+b c)=(a+b)(c+d)-a c-b d
$$

High bit: $4=a$ Low bit: $5=b$
$(40 * 30)+(40 * 2+5 * 30)+(5 * 2)$

NOTE: Bases of ten (zeros) can be ignored for now and added on at the end

Generalized Karatsuba Algorithm

$$
x \cdot y=\left(10^{n} a c+10^{n / 2}(a d+b c)+b d\right.
$$

1. Recursively compute ac High bits
2. Recursively compute bd Low bits
3. Recursively compute $(a+b)(c+d)=a c+b d+a d+b c$ Middle bits

Gauss' Trick : (3) - (1) - (2) =ad + bc

Karatsuba Run Time

Total: $\mathbf{3}$ computations instead of 4

Time Complexity

$$
\begin{aligned}
& T(n)=3 T\left(\frac{n}{2}\right)+O(n) . \\
& \Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.585}\right)
\end{aligned}
$$

$\boldsymbol{T} \rightarrow$ run time for multiplication
O(n) \rightarrow standard time for arithmetic
Akra - Bazzi

Akra Bazzi Method

Recurrence relation: expression of a term as a function of the terms before it.

$$
T(x)=g(x)+\sum_{i=1}^{k} a_{i} T\left(b_{i} x+h_{i}(x)\right)
$$

Takes recurrence relation as input: outputs asymptotic time complexity.

$$
\begin{gathered}
\sum_{i=1}^{k} a_{i} b_{i}^{p}=1 \\
T(x)=\Theta\left(x^{p}\left(1+\int_{1}^{x} \frac{g(u)}{u(p+1)} d u\right)\right)
\end{gathered}
$$

Strassen

> Algorithm

Strassen Algorithm

$$
\underbrace{\left[\begin{array}{c|c}
a & b \\
c & d
\end{array}\right] X}_{A} \underset{B}{\left[\begin{array}{c|c}
e & f \\
g & h
\end{array}\right]}=\underset{\text { B }}{\left[\begin{array}{cc}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]}
$$

$$
\begin{aligned}
& M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) ; \\
& M_{2}=\left(A_{21}+A_{22}\right) B_{11} ; \\
& M_{3}=A_{11}\left(B_{12}-B_{22}\right) ; \\
& M_{4}=A_{22}\left(B_{21}-B_{11}\right) ; \\
& M_{5}=\left(A_{11}+A_{12}\right) B_{22} ; \\
& M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) ; \\
& M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right),
\end{aligned}
$$

$$
T(x)=7 T(x / 2)+\Theta\left(n^{3}\right)
$$

Proof: Akra Bazzi

$$
T(x)=7 T(x / 2)+\Theta\left(n^{3}\right)
$$

$$
\begin{gathered}
a=7 \\
b=1 / 2 \\
p=\log 7
\end{gathered}
$$

Works Cited

Cormen, Thomas H., et al. Introduction to Algorithms. MIT Press; McGraw-Hill, 1990.

Bender, Edward A., and Williamson, Stanley G. Mathematics for Algorithm and Systems Analysis. Courier Corporation, 2005.

Acknowledgement

We would like to express our gratitude to our mentor John Shackleton for his guidance. Thank you for all your help!

Thank you!

