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Intro to Algorithm Analysis
Algorithm: A set of instructions that a computer follows and applies on input 

- Input: data entered into an algorithm
- Output: results produced 

Algorithm Analysis: How long it takes for the computer to follow these instructions
- Best measured in terms of large input sizes

INPUT ALGORITHM OUTPUT



Measuring Efficiency 

● Can’t measure time it takes to run ~ machine dependent 

Need:

● Machine Independence
● How algorithm behaves as input size increase 

Run Time: 
# of steps or operations 

executed
Depends on input size 

(#elements) 

Cases to consider: 

○ Worst-case
○ Best-case
○ average case 

Input Size: 
#elements inserted in 

algorithm 

Represented by n



● describe the upper-bound 
● worst-case scenario  

● lower bound 
● best-case scenario 

● describes best and worst case scenario. 
● gives the exact bound. 

Big O notation O(n) Big-Omega Ω

Theta Θ



Search Algorithms 

Linear Search

O(n)

Binary Search

O(log₂ n)

Linear Search: Sort through until 
desired element is found

Binary Search: 

- Divides data set in half 
- Compares target value with 

middle term 
- Eliminates half set that does 

not contain T
- Repeats until T found



Recursive Algorithms 
● Divide the larger problem into subproblems by calling itself

● Divides until the base case is reached and performs the 
algorithm’s objective on easily solvable inputs  



Fibonacci Sequence 



Karatsuba Algorithm 

● Fast Multiplication Algorithm 

● Reduces time it takes to multiple 2  even n-digit numbers
○ If odd, add zeros



Naive Method of Multiplying 

● Each digit in x  multiplied to each digit in y
● Total: 4 single-digit computations to find x *y
● n² operations (n → # digits in each number)

n² operations → Time Complexity O(n²)



Deriving Karatsuba Algorithm 

x= 45 = 40 + 5 y = 32 = 30 + 2 

High bit: 4 = a 
Low bit: 5 = b

High bit: 3 = c
Low bit: 2 = d

xy = (40 +5) x (30+2)

xy = (40*30) + (40*2)+ (5*30) + (5*2)

Even this way, still 4 computations (n²)
n → #digits in each number 

1. Split number 
in half

2. Another way to express 
multiplication 

3. Distributive property



Karatsuba Algorithm 

x= 45 = 40 + 5 y = 32 = 30 + 2 

High bit: 4 = a 
Low bit: 5 = b

High bit: 3 = c
Low bit: 2 = d

xy = (40*30) + (40*2)+ (5*30) + (5*2)

KA divides problem 
into 3 sub-problems 

(instead of 4) 

(40*30) (40*2 + 5*30) (5*2)

High bits Middle bits Low bits 

ac (ad + bc) bd+

+ +

+



x= 45 = 40 + 5 y = 32 = 30 + 2 

High bit: 4 = a 
Low bit: 5 = b

High bit: 3 = c
Low bit: 2 = d

xy = (40*30) + (40*2)+ (5*30) + (5*2)

(40*30) (40*2 + 5*30) (5*2)

High bits Middle bits Low bits 

ac (ad + bc) bd+

+ +

+

Middle Term

(ad + bc) = (a + b)(c + d) − ac − bd

Proof → Gauss’ Trick: 

(ac + ad + bc + bd) - ac - bd

NOTE: Bases of ten (zeros) can be ignored 
for now and added on at the end

Karatsuba Algorithm Cont.

Subtract high & low bits from total to find middle



Generalized Karatsuba Algorithm 

High bits
Low bits

Middle bits

H                          M                   L                     

NOTE: Bases of ten (zeros) can be ignored 
for now and added on at the end



Karatsuba Run Time 

(4*3) (4+2) * (5+3) (5*2)

High bits Middle bits Low bits 

ac (a + b)(c + d) − ac − bd bd

+ +

n/2 * n/2 
1 single-digit computation 

(n/2) * (n/2) 
1 single-digit computation 

n/2 * n/2 

Total: 3 computations instead of 4

1 single-digit computation 



Time Complexity 

T → run time for multiplication 
O(n) → standard time for arithmetic 



Akra - Bazzi



Akra Bazzi Method

Recurrence relation: expression of a term as a function of the terms before it.

Takes recurrence relation as input: outputs asymptotic time complexity.



Strassen 
Algorithm



Strassen Algorithm



T(x) = 7T(x/2) + Θ(n³) 



Proof: Akra Bazzi

a = 7 
b = ½

p = log 7

T(x) = 7T(x/2) + Θ(n³) 
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