The Implementation of Model Pruning to Optimize zk-SNARKs in Machine Learning

Twelfth Annual Spring Term PRIMES Conference, May 21-22, 2022

By: Abigail Thomas

Mentor: Yu Xia

Introduction

Cloud ComputingHow is it Secure?

Introduction

Cloud ComputingHow is it Secure?

(zero-knowledge)
 Succinct Non-Interactive
 Argument of Knowledge
 (zk-SNARK)

Our Goal

- Proof must be less computationally expensive than outsourced program
- Proposed Optimization:Model Pruning

zk-SNARKs

(zero-knowledge) Succinct Non-Interactive Argument of Knowledge

3 Properties

- Completeness: prover can convince the verifier through a proof given a statement and a witness
- Soundness: in the case the prover is a malicious party, the verifier cannot be convinced of a false statement
- Zero-Knowledge: the prover will not reveal its witness.

Constructing a zk-SNARK

R1CS: rank 1 constraint system

Example: $x^3 + x + 5 == 35$

Constructing a zk-SNARK

R1CS: rank 1 constraint system zk-SNARK

Example: $x^3 + x + 5 == 35$

Network Pruning

Network Pruning

Network Pruning

Neural Network

 MNIST-dataset
 Shallow-Net Architecture

ZEN (Zero-Knowledge Proof for Neural Networks)

- ZEN reduces R1CS constraints \rightarrow less complex proof
- **Other Characteristics:**

 - ZEN_{infer} and ZEN_{acc}
 zk-SNARKs only support integers

Experiment

 Calculate constraints for neural network without pruning (0, 0.50, 1.0)
 Find accuracy of model

Amount Pruned	Accuracy	# of Constraints
0%	0.9516	363736
50%	0.9505	363719
100%	0.0980	363644

00

• 19

Applications of this Research

Contributions to Cloud Computing

 outsource more powerful computations
 Decrease complexity of authentication proofs

Further Research

- Further decrease number of constraints
 Experiment with:
 - pruning methods (movement pruning)
 - neural network structures
 - o datasets

Acknowledgements

Special Thanks to:

My mentor, Yu Xia
 MIT PRIMES
 My family

