Online Learning of Smooth Functions

Ethan Zhou Mentor: Jesse Geneson

October 15, 2022 MIT PRIMES Conference

- Online learning is a model of machine learning where a learner trains on data revealed sequentially.
 - For example, predicting stock prices
- We investigate the online learning of real-valued functions, where a learning algorithm predicts outputs of a real-valued function f based on previously revealed points (x, f(x)).

Fix a domain X and a class \mathcal{F} of functions from X to \mathbb{R} . (These are known to the learner.)

A learning algorithm, A, learns \mathcal{F} as follows:

- An adversary selects $f \in \mathcal{F}$.
- Learning then proceeds in trials. On trial $i \ge 0$:
 - The adversary gives A an input $x_i \in X$
 - A produces ŷ_i ∈ ℝ, its prediction for f(x_i) based on all previously revealed points (x_j, f(x_j))
 - The adversary reveals the true value of $f(x_i)$

Measuring performance

Question

How can we measure the difficulty of learning some class ${\mathcal F}$ of real-valued functions?

- Fix p ≥ 1. On each trial i ≥ 1, if the learner A makes a mistake, it gains a penalty term |ŷ_i − f(x_i)|^p.
 - $\bullet\,$ For this to work, ${\cal F}$ should contain "nice" functions
 - As p increases, these penalties decay faster
- We are interested in worst-case performance, where the adversary selects *f* ∈ *F* and inputs *x_i* to maximize total penalty.

opt

For $p \ge 1$ and a class \mathcal{F} of real-valued functions, $\operatorname{opt}_p(\mathcal{F})$ is the best upper bound on the sum of penalties, $\sum_{i\ge 1} |\hat{y}_i - f(x_i)|^p$, a learner can guarantee while learning \mathcal{F} , against any adversary.

"Smooth" single-variable functions

Consider the following classes of "nice" functions:

For $q \ge 1$, \mathcal{F}_q is the class of absolutely continuous functions $f: [0,1] \to \mathbb{R}$ such that $\int_0^1 |f'(x)|^q dx \le 1$.

 \mathcal{F}_{∞} is the class of functions $f:[0,1] \to \mathbb{R}$ such that $|f(x_1) - f(x_2)| \le |x_1 - x_2|$ for all $x_1, x_2 \in [0,1]$.

- \mathcal{F}_{∞} can be thought of as the limit of \mathcal{F}_q as $q \to \infty$.
- As q increases, \mathcal{F}_q shrinks.
 - Thus $\operatorname{opt}_p(\mathcal{F}_q)$ decreases as well, for any $p\geq 1$.

We show that for $p, q \ge 1$, $\mathsf{opt}_p(\mathcal{F}_q) \ge 1$:

- The adversary sets $x_0 = 0$ and reveals f(0) = 0.
- The function f(x) = x is in \mathcal{F}_q , since

$$\int_0^1 |f'(x)|^q \mathrm{d}x = \int_0^1 1 \mathrm{d}x = 1 \le 1.$$

Likewise the function f(x) = -x is in \mathcal{F}_q .

- Thus the adversary can set $x_1 = 1$ and reveal $f(1) = \pm 1$, whichever is farther from the learner's prediction.
- This forces a penalty of at least $|\hat{y}_1 f(x_1)|^p \ge 1$.

- For which $p, q \ge 1$ is $opt_p(\mathcal{F}_q)$ infinite?
- For which $p, q \ge 1$ is $opt_p(\mathcal{F}_q)$ equal to 1?
- How does $opt_p(\mathcal{F}_q)$ vary with p, q?
 - Especially as it tends to infinity

Theorem [Kimber and Long, 1995]

$$\text{For } p,q \geq 1 \text{, } \operatorname{opt}_1(\mathcal{F}_q) = \operatorname{opt}_1(\mathcal{F}_\infty) = \operatorname{opt}_p(\mathcal{F}_1) = \infty.$$

Theorem [Kimber and Long, 1995]

For $p, q \geq 2$, $\mathsf{opt}_p(\mathcal{F}_q) = 1$.

Theorem [Geneson, 2021]

For $\varepsilon \in (0,1)$ and $q \ge 2$, $\operatorname{opt}_{1+\varepsilon}(\mathcal{F}_q) = \Theta(\varepsilon^{-\frac{1}{2}})$, where the constant factors do not depend on q.

Previous results

Ethan Zhou

Our results

For $p \ge 1$ and $q \ge 2$, $\operatorname{opt}_p(\mathcal{F}_q)$ is known up to a constant factor, so most of our work centers on understanding the $q \in (1, 2)$ case.

Theorem

For
$$\varepsilon \in (0,1)$$
, $\mathsf{opt}_2(\mathcal{F}_{1+\varepsilon}) = \Theta(\varepsilon^{-1})$.

Theorem

For
$$\varepsilon \in (0,1)$$
 and $p \geq 2 + \varepsilon^{-1}$, $\mathsf{opt}_p(\mathcal{F}_{1+\varepsilon}) = 1$.

- For any q > 1, there exists p such that the adversary cannot do better than forcing the learner to guess between f(x) = x and f(x) = −x.
 - Compare to ${\sf opt}_p(\mathcal{F}_1)=\infty$ for all $p\geq 1$

Our results

Ethan Zhou

We can also generalize to functions from $[0,1]^d$ to \mathbb{R} :

 $\mathcal{F}_{q,d}$ For $q \geq 1$ and $d \in \mathbb{Z}_{>0}$, $\mathcal{F}_{q,d}$ is the class of functions $f : [0,1]^d \to \mathbb{R}$ such that any function $g : [0,1] \to \mathbb{R}$ formed by fixing d-1arguments of f is in \mathcal{F}_q . $\mathcal{F}_{\infty,d}$ is defined similarly.

Our results

Proposition

For $p, q \ge 1$ and $d \in \mathbb{Z}_{>0}$:

• $\operatorname{opt}_{\rho}(\mathcal{F}_{q,d}) \geq d \cdot \operatorname{opt}_{\rho}(\mathcal{F}_{q});$

•
$$\operatorname{opt}_p(\mathcal{F}_{\infty,d}) \geq d^p \cdot \operatorname{opt}_p(\mathcal{F}_\infty).$$

Proposition

For
$$p \ge 1$$
 and $d \in \mathbb{Z}_{>0}$:
• If $p < d$ then $\operatorname{opt}_p(\mathcal{F}_{\infty,d}) = \infty$;
• If $p > d$ then $\operatorname{opt}_p(\mathcal{F}_{\infty,d}) \le \frac{(2^d - 1)d^p}{1 - \frac{2^d}{2q}}$

Single-variable setup:

- Is $opt_p(\mathcal{F}_q)$ finite for all p, q > 1?
 - If so, how does it grow as p,q
 ightarrow 1?

• What does the region of (p, q) for which $opt_p(\mathcal{F}_q) = 1$ look like? Multivariable setup:

- Is $\operatorname{opt}_d(\mathcal{F}_{\infty,d})$ infinite for all $d\in\mathbb{Z}_{>0}?$
- Algorithms for learning functions in $\mathcal{F}_{q,d}$

- My mentor, Dr. Jesse Geneson
- Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, and the PRIMES program
- My family