# Online Learning of Smooth Functions 

Ethan Zhou

Mentor: Jesse Geneson

October 15, 2022<br>MIT PRIMES Conference

## Introduction

- Online learning is a model of machine learning where a learner trains on data revealed sequentially.
- For example, predicting stock prices
- We investigate the online learning of real-valued functions, where a learning algorithm predicts outputs of a real-valued function $f$ based on previously revealed points $(x, f(x))$.


## The setup

Fix a domain $X$ and a class $\mathcal{F}$ of functions from $X$ to $\mathbb{R}$. (These are known to the learner.)

A learning algorithm, $A$, learns $\mathcal{F}$ as follows:

- An adversary selects $f \in \mathcal{F}$.
- Learning then proceeds in trials. On trial $i \geq 0$ :
- The adversary gives $A$ an input $x_{i} \in X$
- A produces $\hat{y}_{i} \in \mathbb{R}$, its prediction for $f\left(x_{i}\right)$ based on all previously revealed points $\left(x_{j}, f\left(x_{j}\right)\right)$
- The adversary reveals the true value of $f\left(x_{i}\right)$


## Measuring performance

## Question

How can we measure the difficulty of learning some class $\mathcal{F}$ of real-valued functions?

- Fix $p \geq 1$. On each trial $i \geq 1$, if the learner $A$ makes a mistake, it gains a penalty term $\mid \hat{y}_{i}-f\left(\left.x_{i}\right|^{p}\right.$.
- For this to work, $\mathcal{F}$ should contain "nice" functions
- As $p$ increases, these penalties decay faster
- We are interested in worst-case performance, where the adversary selects $f \in \mathcal{F}$ and inputs $x_{i}$ to maximize total penalty.


## opt

For $p \geq 1$ and a class $\mathcal{F}$ of real-valued functions, $\operatorname{opt}_{p}(\mathcal{F})$ is the best upper bound on the sum of penalties, $\sum_{i \geq 1}\left|\hat{y}_{i}-f\left(x_{i}\right)\right|^{p}$, a learner can guarantee while learning $\mathcal{F}$, against any adversary.

## "Smooth" single-variable functions

Consider the following classes of "nice" functions:

## $\mathcal{F}_{q}$

For $q \geq 1, \mathcal{F}_{q}$ is the class of absolutely continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1}\left|f^{\prime}(x)\right|^{q} \mathrm{~d} x \leq 1$.
$\mathcal{F}_{\infty}$ is the class of functions $f:[0,1] \rightarrow \mathbb{R}$ such that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq\left|x_{1}-x_{2}\right|$ for all $x_{1}, x_{2} \in[0,1]$.

- $\mathcal{F}_{\infty}$ can be thought of as the limit of $\mathcal{F}_{q}$ as $q \rightarrow \infty$.
- As $q$ increases, $\mathcal{F}_{q}$ shrinks.
- Thus opt ${ }_{p}\left(\mathcal{F}_{q}\right)$ decreases as well, for any $p \geq 1$.


## Example

We show that for $p, q \geq 1, \operatorname{opt}_{p}\left(\mathcal{F}_{q}\right) \geq 1$ :

- The adversary sets $x_{0}=0$ and reveals $f(0)=0$.
- The function $f(x)=x$ is in $\mathcal{F}_{q}$, since

$$
\int_{0}^{1}\left|f^{\prime}(x)\right|^{q} \mathrm{~d} x=\int_{0}^{1} 1 \mathrm{~d} x=1 \leq 1
$$

Likewise the function $f(x)=-x$ is in $\mathcal{F}_{q}$.

- Thus the adversary can set $x_{1}=1$ and reveal $f(1)= \pm 1$, whichever is farther from the learner's prediction.
- This forces a penalty of at least $\left|\hat{y}_{1}-f\left(x_{1}\right)\right|^{p} \geq 1$.


## Main questions

- For which $p, q \geq 1$ is $\operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)$ infinite?
- For which $p, q \geq 1$ is $\operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)$ equal to 1 ?
- How does opt ${ }_{p}\left(\mathcal{F}_{q}\right)$ vary with $p, q$ ?
- Especially as it tends to infinity


## Previous results

## Theorem [Kimber and Long, 1995]

For $p, q \geq 1, \operatorname{opt}_{1}\left(\mathcal{F}_{q}\right)=\operatorname{opt}_{1}\left(\mathcal{F}_{\infty}\right)=\operatorname{opt}_{p}\left(\mathcal{F}_{1}\right)=\infty$.

## Theorem [Kimber and Long, 1995]

For $p, q \geq 2, \operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)=1$.

## Theorem [Geneson, 2021]

For $\varepsilon \in(0,1)$ and $q \geq 2$, opt $_{1+\varepsilon}\left(\mathcal{F}_{q}\right)=\Theta\left(\varepsilon^{-\frac{1}{2}}\right)$, where the constant factors do not depend on $q$.

## Previous results

Bounds on $\operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)$ for $p, q>1$


## Our results

For $p \geq 1$ and $q \geq 2, \operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)$ is known up to a constant factor, so most of our work centers on understanding the $q \in(1,2)$ case.

## Theorem

For $\varepsilon \in(0,1)$, opt $_{2}\left(\mathcal{F}_{1+\varepsilon}\right)=\Theta\left(\varepsilon^{-1}\right)$.

## Theorem

For $\varepsilon \in(0,1)$ and $p \geq 2+\varepsilon^{-1}, \operatorname{opt}_{p}\left(\mathcal{F}_{1+\varepsilon}\right)=1$.

- For any $q>1$, there exists $p$ such that the adversary cannot do better than forcing the learner to guess between $f(x)=x$ and $f(x)=-x$.
- Compare to opt $_{p}\left(\mathcal{F}_{1}\right)=\infty$ for all $p \geq 1$


## Our results

Bounds on $\operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)$ for $p, q>1$


## A multivariable generalization

We can also generalize to functions from $[0,1]^{d}$ to $\mathbb{R}$ :
$\mathcal{F}_{q, d}$
For $q \geq 1$ and $d \in \mathbb{Z}_{>0}, \mathcal{F}_{q, d}$ is the class of functions $f:[0,1]^{d} \rightarrow \mathbb{R}$ such that any function $g:[0,1] \rightarrow \mathbb{R}$ formed by fixing $d-1$ arguments of $f$ is in $\mathcal{F}_{q}$. $\mathcal{F}_{\infty, d}$ is defined similarly.

## Our results

## Proposition

For $p, q \geq 1$ and $d \in \mathbb{Z}_{>0}$ :

- $\operatorname{opt}_{p}\left(\mathcal{F}_{q, d}\right) \geq d \cdot \operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)$;
- opt ${ }_{p}\left(\mathcal{F}_{\infty, d}\right) \geq d^{p} \cdot$ opt $_{p}\left(\mathcal{F}_{\infty}\right)$.


## Proposition

For $p \geq 1$ and $d \in \mathbb{Z}_{>0}$ :

- If $p<d$ then $\operatorname{opt}_{p}\left(\mathcal{F}_{\infty, d}\right)=\infty$;
- If $p>d$ then $\operatorname{opt}_{p}\left(\mathcal{F}_{\infty, d}\right) \leq \frac{\left(2^{d}-1\right) d^{p}}{1-\frac{2^{d}}{2^{p}}}$.


## Future work

Single-variable setup:

- Is $\operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)$ finite for all $p, q>1$ ?
- If so, how does it grow as $p, q \rightarrow 1$ ?
- What does the region of $(p, q)$ for which $\operatorname{opt}_{p}\left(\mathcal{F}_{q}\right)=1$ look like?

Multivariable setup:

- Is opt ${ }_{d}\left(\mathcal{F}_{\infty, d}\right)$ infinite for all $d \in \mathbb{Z}_{>0}$ ?
- Algorithms for learning functions in $\mathcal{F}_{q, d}$


## Acknowledgments

- My mentor, Dr. Jesse Geneson
- Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, and the PRIMES program
- My family

