New Properties of the Intrinsic Information and Their Relation to Bound Secrecy

Andrew Tung, Karthik Vedula
MIT PRIMES

October 15, 2022

Overview

(1) Entropy
(2) Secret-key rate and bound secrecy
(3) Our result

Informal definition

Informally,

- Bit is 0 or 1
- Encoding a variable using bits = replacing outputs with binary strings (used to compress data)

Informal definition

Informally,

- Bit is 0 or 1
- Encoding a variable using bits = replacing outputs with binary strings (used to compress data)

Data is generally a continuous stream of digits, so we can get confused about what a string represents

Informal definition

Informally,

- Bit is 0 or 1
- Encoding a variable using bits = replacing outputs with binary strings (used to compress data)

Data is generally a continuous stream of digits, so we can get confused about what a string represents

Ex: Encoding from $a \rightarrow 0, b \rightarrow 01$. Bad because if first digit $=0$, then we're confused

Informal definition

Informally,

- Bit is 0 or 1
- Encoding a variable using bits = replacing outputs with binary strings (used to compress data)

Data is generally a continuous stream of digits, so we can get confused about what a string represents

Ex: Encoding from $a \rightarrow 0, b \rightarrow 01$. Bad because if first digit $=0$, then we're confused

Goal: Try to use as few bits (on average) as possible to encode without confusion

Informal definition

More precisely, for stream of digits, must have a prefix code:

Informal definition

More precisely, for stream of digits, must have a prefix code:

Definition

A prefix code is encoding where no whole code word is a prefix of another code word.

Informal definition

More precisely, for stream of digits, must have a prefix code:

Definition

A prefix code is encoding where no whole code word is a prefix of another code word.

Goal: try to find best prefix code

Key Point

Entropy is minimum number of bits (on average) needed to prefix encode a variable

Motivating example

Consider a random variable defined $a s^{1}$

$$
X= \begin{cases}a & \text { probability } \frac{1}{2} \\ b & \text { probability } \frac{1}{4} \\ c & \text { probability } \frac{1}{8} \\ d & \text { probability } \frac{1}{8}\end{cases}
$$

How many bits do you need to encode this information?

[^0]
Motivating example

One idea: There are 4 outputs, so use $\log _{2}(4)=2$ bits (to get 4 outputs)

Motivating example

One idea: There are 4 outputs, so use $\log _{2}(4)=2$ bits (to get 4 outputs)

Encode $a \rightarrow 00, b \rightarrow 01, c \rightarrow 10, d \rightarrow 11$. Prefix code because all code words are distinct, fixed length

Motivating example

One idea: There are 4 outputs, so use $\log _{2}(4)=2$ bits (to get 4 outputs)

Encode $a \rightarrow 00, b \rightarrow 01, c \rightarrow 10, d \rightarrow 11$. Prefix code because all code words are distinct, fixed length

Key Point
Entropy of variable with n outputs $\leq \log _{2}(n)$.

Motivating example

No matter the value of $X, 2$ bits needed to encode

Motivating example

No matter the value of $X, 2$ bits needed to encode
Can we do better/use less bits?

Motivating example

No matter the value of $X, 2$ bits needed to encode
Can we do better/use less bits?
Yes!

Motivating example

Idea: a much more common than $b, c, d \Longrightarrow$ save a bit on it

Motivating example

Idea: a much more common than $b, c, d \Longrightarrow$ save a bit on it
Encode using this prefix code:

$$
\begin{aligned}
& a \rightarrow 0 \\
& b \rightarrow 10 \\
& c \rightarrow 110 \\
& d \rightarrow 111
\end{aligned}
$$

Motivating example

Idea: a much more common than $b, c, d \Longrightarrow$ save a bit on it
Encode using this prefix code:

$$
\begin{aligned}
& a \rightarrow 0 \\
& b \rightarrow 10 \\
& c \rightarrow 110 \\
& d \rightarrow 111
\end{aligned}
$$

Even though c, d use more bits in this code, less prevalent \Longrightarrow overall save.

Motivating example

Idea: a much more common than $b, c, d \Longrightarrow$ save a bit on it
Encode using this prefix code:

$$
\begin{aligned}
& a \rightarrow 0 \\
& b \rightarrow 10 \\
& c \rightarrow 110 \\
& d \rightarrow 111
\end{aligned}
$$

Even though c, d use more bits in this code, less prevalent \Longrightarrow overall save.

Average number of bits required:

$$
\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3=\frac{7}{4}<2
$$

Formal definition

This prefix code gives rise to the Shannon entropy:

Formal definition

This prefix code gives rise to the Shannon entropy:

Definition

Suppose a discrete random variable X has probability distribution $\left\{p_{i}\right\}=p_{1}, p_{2}, \ldots, p_{n}$. The Shannon entropy of X is

$$
H(X):=\sum_{i}-p_{i} \log p_{i}
$$

(where log is taken base 2).

Formal definition

This prefix code gives rise to the Shannon entropy:

Definition

Suppose a discrete random variable X has probability distribution $\left\{p_{i}\right\}=p_{1}, p_{2}, \ldots, p_{n}$. The Shannon entropy of X is

$$
H(X):=\sum_{i}-p_{i} \log p_{i}
$$

(where log is taken base 2).

Check: $H(X)=-\frac{1}{2} \log \frac{1}{2}-\frac{1}{4} \log \frac{1}{4}-\frac{1}{8} \log \frac{1}{8}-\frac{1}{8} \log \frac{1}{8}=\frac{7}{4}$.

Operational motivation

Theorem (Shannon's noiseless coding theorem)

Given a random variable X, any encoding using less than $H(X)$ bits on average is not reliable, while there is always an reliable encoding using $H(X)+\epsilon$ bits on average for all $\epsilon>0$.

Operational motivation

Theorem (Shannon's noiseless coding theorem)

Given a random variable X, any encoding using less than $H(X)$ bits on average is not reliable, while there is always an reliable encoding using $H(X)+\epsilon$ bits on average for all $\epsilon>0$.

Key Point

Shannon entropy $=$ our notion of entropy

Secret-key rate

Consider a joint probability distribution $X Y Z$. We sample from the distribution and give Alice X, Bob Y, and Eve Z.

Secret-key rate

Consider a joint probability distribution $X Y Z$. We sample from the distribution and give Alice X, Bob Y, and Eve Z.

Secret-key rate

After a sequence of communications which Eve can hear, Alice and Bob attempt to agree on a secret key.

Secret-key rate

After a sequence of communications which Eve can hear, Alice and Bob attempt to agree on a secret key.

Secret-key rate vs. sharing secrecy

- Secret-key rate $=$ rate of distilling secret bits both Alice and Bob have that Eve does not

Secret-key rate vs. sharing secrecy

- Secret-key rate $=$ rate of distilling secret bits both Alice and Bob have that Eve does not
- Sharing secrecy $=$ Alice and Bob have correlation in their random variables that Eve does not have access to

Secret-key rate vs. sharing secrecy

- Secret-key rate $=$ rate of distilling secret bits both Alice and Bob have that Eve does not
- Sharing secrecy $=$ Alice and Bob have correlation in their random variables that Eve does not have access to

Both seem equivalent, but it is not obvious why. One direction has been proven:

Secret-key rate vs. sharing secrecy

- Secret-key rate $=$ rate of distilling secret bits both Alice and Bob have that Eve does not
- Sharing secrecy $=$ Alice and Bob have correlation in their random variables that Eve does not have access to

Both seem equivalent, but it is not obvious why. One direction has been proven:

Theorem (Maurer \& Wolf, 1999)
If Alice and Bob do not share secrecy, they cannot distill a secret key.

Examples

Share secrecy Can gen. key

X	0	1			
Y					
0	$1 / 4$	$1 / 4$			
1	$1 / 4$	$1 / 4$	\quad	Z	prob.
:---:	:---:				
0	$1 / 2$				
1	$1 / 2$	\cdots			

Examples

Share secrecy Can gen. key

X	0	1
Y		
0	$1 / 4$	$1 / 4$
1	$1 / 4$	$1 / 4$

Z	prob.
0	$1 / 2$
1	$1 / 2$

X	0	1
Y		
0	$1 / 2$	0
1	0	$1 / 2$

Z	prob.
0	$1 / 2$
1	$1 / 2$

Examples

Share secrecy Can gen. key

X	0	1
Y		
0	$1 / 4$	$1 / 4$
1	$1 / 4$	$1 / 4$

Z	prob.
0	$1 / 2$
1	$1 / 2$

X	0	1
Y		
0	$1 / 2$	0
1	0	$1 / 2$

Z	prob.
0	$1 / 2$
1	$1 / 2$

X	0	1
Y		
0	$1 / 2$	0
1	0	$1 / 2$

Eve receives what Alice gets.

Bound secrecy

The conjecture of bound secrecy states that there are distributions $X Y Z$ such that Alice and Bob share secrecy but they cannot agree on a secret key.

Share secrecy
Can generate a secret key

Bound secrecy

The conjecture of bound secrecy states that there are distributions $X Y Z$ such that Alice and Bob share secrecy but they cannot agree on a secret key.

Share secrecy
Can generate a secret key

This seems impossible!

Another non-example

X	0	1	2	3
Y				
0	$1 / 8$	$1 / 8$	0	0
1	$1 / 8$	$1 / 8$	0	0
2	0	0	$1 / 4$	0
3	0	0	0	$1 / 4$

$Z \equiv X \bmod 2$ if $X, Y \in\{0,1\}$,
$Z \equiv \bmod 2$ if $X, Y \in\{2,3\}$

Another non-example

X	0	1	2	3
Y				
0	$1 / 8$	$1 / 8$	0	0
1	$1 / 8$	$1 / 8$	0	0
2	0	0	$1 / 4$	0
3	0	0	0	$1 / 4$

$X \equiv X \bmod 2$ if $X, Y \in\{0,1\}$,
$Z \equiv \bmod 2$ if $X, Y \in\{2,3\}$

Share secrecy
Can generate a secret key

How do Alice and Bob extract the secret key?

Another non-example

X	0	1	2	3
Y				
0	$1 / 8$	$1 / 8$	0	0
1	$1 / 8$	$1 / 8$	0	0
2	0	0	$1 / 4$	0
3	0	0	0	$1 / 4$

Let $U=\lfloor X / 2\rfloor$. This is a secret bit shared between Alice and Bob.

Another non-example

X	0	1	2	3
Y				
0	$1 / 8$	$1 / 8$	0	0
1	$1 / 8$	$1 / 8$	0	0
2	0	0	$1 / 4$	0
3	0	0	0	$1 / 4$

Let $U=\lfloor X / 2\rfloor$. This is a secret bit shared between Alice and Bob.
If Eve knew U, Alice and Bob would have no secrecy.

Our results

Formalizing the previous example:

Definition

The reduced intrinsic information is informally the smallest amount of information we need to tell Eve in order for Alice and Bob to share no secrecy.

Our results

Formalizing the previous example:

Definition

The reduced intrinsic information is informally the smallest amount of information we need to tell Eve in order for Alice and Bob to share no secrecy.

Our results

Assuming the conjecture of bound secrecy, we have shown that the reduced intrinsic information does NOT measure whether Alice and Bob can agree on a secret key.

Acknowledgements

- Our mentor (Andrey Khesin)
- MIT PRIMES-USA, Prof. Pavel Etingof, Dr. Slava Gerovitch
- Dr. Tanya Khovanova

Thanks for listening!

[^0]: ${ }^{1}$ Example from Nielsen and Chuang, "Quantum Computation and Quantum information."

