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Density-based Clustering

‘ { k-means clustering result!
Unclustered data o 5
'Everitt, Landau, and Leese 20009. DBSCAN clustering result?

2Ester et al. 1996.
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Why Density-Peaks Clustering (DPC) Algorithm

DBSCAN fails on datasets where
clusters are close together?

3Amagata and Hara 2021.
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Why Density-Peaks Clustering (DPC) Algorithm

DBSCAN fails on datasets where DPC is able to separate close
clusters are close together? clusters®

3Amagata and Hara 2021.
*Amagata and Hara 2021.
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DPC Algorithm Procedure Description
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DPC Algorithm Procedure Description
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Why Focus on Parallelism
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Each generation of
1970 1980 1990 Moore’s Law

potentially doubles

the number of cores.
© 2019 Julian Shun N

CPU clock-speed hits ceiling; #cores increases exponentially®

8Shun 2021.
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Parallel Algorithm Background

T, = runtime with p processors

T1 = work
T~ = span
Brent's Law:
T — T
Tp < Too + . X
p
Computational graph of a
parallel algorithm?®
°Shun 2021.
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Parallel Dependent Point Finding with Priority Search
kd-tree

Binary Space Partitioning Tree:
Q Divide points up equally

Q Satisfy heap property (higher in
the tree = higher density)
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Parallel Dependent Point Finding with Priority Search
kd-tree

Binary Space Partitioning Tree:

@ Divide points up equally Reduce dependent point finding

Q Satisfy heap property (higher in from O(n) to Avg. O(log(n))

the tree = higher density)
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Parallel Dependent Point Finding with Priority Search
kd-tree
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Algorithmic Complexity

Compute density Find dependent point
Algorithms Avg. Work Avg. Span Avg. Work  Avg. Span
Previous SOTA? O(nz_é + np) O(nl_é +p) o(n?) O(n)
Our algorithm O(n2_%) O(nl_%) O(nlog(n))  O(log(n))

Complexity comparison

Q n: the number of points to be clustered
Q p: average density of points
©Q d: the number of dimensions each point has

YRodriguez and Laio 2014; Amagata and Hara 2021.
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Experiment Setup

O 30-core, 2-way hyperthreading, CPU | Dataset n d | synthetic
uniform 10M 2 yes
©3.1 GHz <imden oM " o
@ Implemented with ParlayLib!! and varden oM | 2 yes
ParGeol? Geolife 24.88M | 3 no
PAMAP2 | 0.26M 4 no
Sensor 3.84M 5 no
HT 0.93M 8 no
Datasets

Google Cloud Platform

HBlelloch, Anderson, and Dhulipala 2020.
2\Wang et al. 2022.
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Runtime Comparison

o] Overall speedups:
g - 8.3-4666.3x
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Parallel Scalability
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13.2x self-relative speedup
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Conclusion

Q@ Proposed the Priority Search kd-tree data structure and proved its
avg. query complexity

Q Developed a theoretically efficient and practically fast DPC algorithm,
with up to 4666x speedup compared to SOTA
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