Michael Huang
Under the direction of
Shangdi Yu and Prof. Julian Shun

October 16, 2022

Density-based Clustering

‘ { k-means clustering result!
Unclustered data o 5
'Everitt, Landau, and Leese 20009. DBSCAN clustering result?

2Ester et al. 1996.
Michael Huang O Ocober 16,2022 1/13

Why Density-Peaks Clustering (DPC) Algorithm

DBSCAN fails on datasets where
clusters are close together?

3Amagata and Hara 2021.
Michael Huang D Ocober 16,202 2/13

Why Density-Peaks Clustering (DPC) Algorithm

DBSCAN fails on datasets where DPC is able to separate close
clusters are close together? clusters®

3Amagata and Hara 2021.
*Amagata and Hara 2021.
Michael Huang _ October 16, 2022 2/13

DPC Algorithm Procedure Description

([

[J

e® %, % °%
o o ©

Compute density®

®Rodriguez and Laio 2014.
Michael Huang D Ocober 16,2022 3/13

DPC Algorithm Procedure Description

[[}
([([[} [J
(] (J
° ° % °,
° %, 0
) ° °
] ;
([[
° L ° [
) [] 'Y o, o0) [J r'y [) X J
o 0.‘ e ® A o.‘ e ®
Compute density® Find dependent point

(the nearest neighbor
with higher density)®

®Rodriguez and Laio 2014.
®Rodriguez and Laio 2014.
Michael Huang _ October 16, 2022 3/13

DPC Algorithm Procedure Description

[[}
([([[} []
(] (J
° ° 0%,
° %, 0
° ° °
° 4 °
) L] °)
o ® ry) [P ° & [N]
o 0.‘ e ® A o.‘ e ®
Compute density® Find dependent point

(the nearest neighbor
with higher density)®

®Rodriguez and Laio 2014.
®Rodriguez and Laio 2014.
"Rodriguez and Laio 2014.

Michael Huang _ October 16, 2022 3/13

DPC Algorithm Procedure Description

°
0a? °®
L] ()
)
)
)
)
00..0..‘:0.

Compute density® Find dependent point

(the nearest nelghbor

®Rodriguez and Laio 2014. Se
®Rodriguez and Laio 2014.
"Rodriguez and Laio 2014.

Michael Huang _ October 16, 2022 3/13

epa rate into clusters’

Why Focus on Parallelism

10,000,000
¢ Transistors x 1000
1,000,000 — & clock frequency (MHz)
100,000 |4 Power (W)
e Cores
10,000
1,000
100
10
1
Each generation of
1970 1980 1990 Moore’s Law

potentially doubles

the number of cores.
© 2019 Julian Shun N

CPU clock-speed hits ceiling; #cores increases exponentially®

8Shun 2021.
Michael Huang] October 16, 2022 4/13

Parallel Algorithm Background

T, = runtime with p processors

T1 = work
T~ = span
Brent's Law:
T — T
Tp < Too + . X
p
Computational graph of a
parallel algorithm?®
°Shun 2021.

Michael Huang T R

Parallel Dependent Point Finding with Priority Search
kd-tree

Binary Space Partitioning Tree:
Q Divide points up equally

Q Satisfy heap property (higher in
the tree = higher density)

Michael Huang e e G G

Parallel Dependent Point Finding with Priority Search
kd-tree

Binary Space Partitioning Tree:
Q Divide points up equally
@ Satisfy heap property (higher in
the tree = higher density)

Michael Huang e e G G

Parallel Dependent Point Finding with Priority Search
kd-tree

Binary Space Partitioning Tree:
Q Divide points up equally
@ Satisfy heap property (higher in
the tree = higher density)

Michael Huang e e G G

Parallel Dependent Point Finding with Priority Search
kd-tree

Binary Space Partitioning Tree:

@ Divide points up equally Reduce dependent point finding

Q Satisfy heap property (higher in from O(n) to Avg. O(log(n))

the tree = higher density)
Michael Huang _ October 16, 2022 7/13

Parallel Dependent Point Finding with Priority Search
kd-tree

Binary Space Partitioning Tree:

@ Divide points up equally Reduce dependent point finding

Q Satisfy heap property (higher in from O(n) to Avg. O(log(n))

the tree = higher density)
Michael Huang _ October 16, 2022 7/13

Parallel Dependent Point Finding with Priority Search
kd-tree

v
=)

Vg \ ¥
@ B o
of 5
Binary Space Partitioning Tree:

@ Divide points up equally Reduce dependent point finding

Q Satisfy heap property (higher in from O(n) to Avg. O(log(n))

the tree = higher density)
Michael Huang _ October 16, 2022 7/13

Algorithmic Complexity

Compute density Find dependent point
Algorithms Avg. Work Avg. Span Avg. Work Avg. Span
Previous SOTA? O(nz_é + np) O(nl_é +p) o(n?) O(n)
Our algorithm O(n2_%) O(nl_%) O(nlog(n)) O(log(n))

Complexity comparison

Q n: the number of points to be clustered
Q p: average density of points
©Q d: the number of dimensions each point has

YRodriguez and Laio 2014; Amagata and Hara 2021.
Michael Huang _ October 16, 2022 8/13

Experiment Setup

O 30-core, 2-way hyperthreading, CPU | Dataset n d | synthetic
uniform 10M 2 yes
©3.1 GHz <imden oM " o
@ Implemented with ParlayLib!! and varden oM | 2 yes
ParGeol? Geolife 24.88M | 3 no
PAMAP2 | 0.26M 4 no
Sensor 3.84M 5 no
HT 0.93M 8 no
Datasets

Google Cloud Platform

HBlelloch, Anderson, and Dhulipala 2020.
2\Wang et al. 2022.
Michael Huang _ October 16, 2022 9/13

Runtime Comparison

o] Overall speedups:
g - 8.3-4666.3x
A et M . b

Density computation

Algorithms
1 DPC-EXACT-BASELINE 1o000-
1 DPC-APPROX-BASELINE _ "o
DPC-FENWICK f]
DPC-INCOMPLETE .
=3 DPC-PRIORITY o 11 H H ” . H H HHn [. | ” I
uniform simden varden Geolife PAMAP2 Sensors HT

Datasets

Dependent point finding

Michael Huang T R

Parallel Scalability

16-9 DPC-EXACT-BASELINE

DPC-APPROX-BASELINE
DPC-FENWICK
8- DPC-INCOMPLETE
° DPC-PRIORITY
E
o 4
3
S
I}
[]
o
(7]
2_
1=
| T T T T T T
1 2 4 8 16 30 60
Threads

13.2x self-relative speedup

Michael Huang R e G

Conclusion

Q@ Proposed the Priority Search kd-tree data structure and proved its
avg. query complexity

Q Developed a theoretically efficient and practically fast DPC algorithm,
with up to 4666x speedup compared to SOTA

Michael Huang e G e

Acknowledgements

o Shangdi Yu
o Prof. Julian Shun
o MIT PRIMES Program

Michael Huang e G

	Acknowledgements

