#### Theoretically Efficient Parallel Density-Peaks Clustering

Michael Huang Under the direction of Shangdi Yu and Prof. Julian Shun

October 16, 2022

#### Density-based Clustering



### Why Density-Peaks Clustering (DPC) Algorithm



DBSCAN fails on datasets where clusters are close together<sup>3</sup>

#### <sup>3</sup>Amagata and Hara 2021.

## Why Density-Peaks Clustering (DPC) Algorithm



DBSCAN fails on datasets where clusters are close together<sup>3</sup>



DPC is able to separate close clusters<sup>4</sup>

<sup>3</sup>Amagata and Hara 2021. <sup>4</sup>Amagata and Hara 2021.



<sup>5</sup>Rodriguez and Laio 2014.



<sup>5</sup>Rodriguez and Laio 2014. <sup>6</sup>Rodriguez and Laio 2014.



Compute density<sup>5</sup>



Find dependent point (the nearest neighbor with higher density)<sup>6</sup>



Separate into clusters<sup>7</sup>

<sup>5</sup>Rodriguez and Laio 2014.
 <sup>6</sup>Rodriguez and Laio 2014.
 <sup>7</sup>Rodriguez and Laio 2014.



#### Why Focus on Parallelism



<sup>8</sup>Shun 2021.

#### Parallel Algorithm Background

 $T_p =$  runtime with p processors  $T_1 =$  work  $T_{\infty} =$  span

Brent's Law:

$$T_p \leq T_\infty + \frac{T_1 - T_\infty}{p}$$

Computational graph of a parallel algorithm<sup>9</sup>

<sup>9</sup>Shun 2021.



Binary Space Partitioning Tree:

- Divide points up equally
- Satisfy heap property (higher in the tree => higher density)



Binary Space Partitioning Tree:

- Divide points up equally
- Satisfy heap property (higher in the tree ⇒ higher density)



Binary Space Partitioning Tree:

- Divide points up equally
- Satisfy heap property (higher in the tree ⇒ higher density)



Binary Space Partitioning Tree:

- Divide points up equally
- Satisfy heap property (higher in the tree => higher density)

Reduce dependent point finding from O(n) to Avg.  $O(\log(n))$ 



Binary Space Partitioning Tree:

- Divide points up equally
- Satisfy heap property (higher in the tree => higher density)

Reduce dependent point finding from O(n) to Avg.  $O(\log(n))$ 



Binary Space Partitioning Tree:

- Divide points up equally
- Satisfy heap property (higher in the tree => higher density)

Reduce dependent point finding from O(n) to Avg.  $O(\log(n))$ 

|                             | Compute density             |                           | Find dependent point |                       |
|-----------------------------|-----------------------------|---------------------------|----------------------|-----------------------|
| Algorithms                  | Avg. Work                   | Avg. Span                 | Avg. Work            | Avg. Span             |
| Previous SOTA <sup>10</sup> | $O(n^{2-\frac{1}{d}}+n ho)$ | $O(n^{1-rac{1}{d}}+ ho)$ | $O(n^2)$             | <i>O</i> ( <i>n</i> ) |
| Our algorithm               | $O(n^{2-\frac{1}{d}})$      | $O(n^{1-rac{1}{d}})$     | $O(n\log(n))$        | $O(\log(n))$          |

Complexity comparison

- In: the number of points to be clustered
- 2  $\rho$ : average density of points
- I the number of dimensions each point has

<sup>10</sup>Rodriguez and Laio 2014; Amagata and Hara 2021.

#### Experiment Setup

- 30-core, 2-way hyperthreading, CPU
   @3.1 GHz
- Implemented with ParlayLib<sup>11</sup> and ParGeo<sup>12</sup>



| Dataset | n      | d | synthetic |
|---------|--------|---|-----------|
| uniform | 10M    | 2 | yes       |
| simden  | 10M    | 2 | yes       |
| varden  | 10M    | 2 | yes       |
| GeoLife | 24.88M | 3 | no        |
| PAMAP2  | 0.26M  | 4 | no        |
| Sensor  | 3.84M  | 5 | no        |
| HT      | 0.93M  | 8 | no        |

Datasets

<sup>11</sup>Blelloch, Anderson, and Dhulipala 2020.
 <sup>12</sup>Wang et al. 2022.

#### Runtime Comparison



#### Parallel Scalability



13.2x self-relative speedup

- Proposed the Priority Search kd-tree data structure and proved its avg. query complexity
- Oeveloped a theoretically efficient and practically fast DPC algorithm, with up to 4666x speedup compared to SOTA

- Shangdi Yu
- Prof. Julian Shun
- MIT PRIMES Program