Positivity Properties of the q-Hit Numbers

Jeffrey Chen
Mentored by Jesse Selover

University of Chicago Laboratory Schools
October 15, 2022
MIT PRIMES Conference

Rook Numbers

Definition

Define a board $B \subseteq[n] \times[n]$ as a subset of the cells of an n by n grid.

Rook Numbers

Definition

Define a board $B \subseteq[n] \times[n]$ as a subset of the cells of an n by n grid.

Definition

For a board B, define the rook number $r_{i}(B)$ as the number of ways to place i non-attacking rooks on the cells of B.

Rook Numbers

Definition

Define a board $B \subseteq[n] \times[n]$ as a subset of the cells of an n by n grid.

Definition

For a board B, define the rook number $r_{i}(B)$ as the number of ways to place i non-attacking rooks on the cells of B.

Example

In the above board B, we have $r_{3}(B)=2$.

Hit Numbers

Definition

For a board $B \subseteq[n] \times[n]$, define the hit number $h_{i}(B)$ as the number of ways to place n non-attacking rooks in the $[n] \times[n]$ grid such that exactly i rooks lie in B.

Hit Numbers

Definition

For a board $B \subseteq[n] \times[n]$, define the hit number $h_{i}(B)$ as the number of ways to place n non-attacking rooks in the $[n] \times[n]$ grid such that exactly i rooks lie in B.

Example

In the previous board B, we have $h_{2}(B)=3$.

Rook-Hit Relation

Rook-Hit Number Relation (Irving-Kaplansky, 1946)

The rook and hit numbers are related by the equation

$$
\sum_{i=0}^{n} h_{i}(B) t^{i}=\sum_{i=0}^{n} r_{i}(B)(n-i)!(t-1)^{i}
$$

Rook-Hit Relation

Rook-Hit Number Relation (Irving-Kaplansky, 1946)

The rook and hit numbers are related by the equation

$$
\sum_{i=0}^{n} h_{i}(B) t^{i}=\sum_{i=0}^{n} r_{i}(B)(n-i)!(t-1)^{i}
$$

Example

In the previous board, $r_{3}(B)=2, r_{2}(B)=9, r_{1}(B)=6, r_{0}(B)=1$, and $h_{3}(B)=2, h_{2}(B)=3, h_{1}(B)=0, h_{0}(B)=1$, so

$$
2 t^{3}+3 t^{2}+0 t+1=2(0!)(t-1)^{3}+9(1!)(t-1)^{2}+6(2!)(t-1)+1(3!)
$$

Finite Field Matrix Counting

Definition

For a board $B \subseteq[n] \times[n]$, define $\mathfrak{m}_{i}(B, q)$ as the number of matrices in \mathbb{F}_{q} (finite field of size q) with support (set of nonzero entries) in B and rank i.

Finite Field Matrix Counting

Definition

For a board $B \subseteq[n] \times[n]$, define $\mathfrak{m}_{i}(B, q)$ as the number of matrices in \mathbb{F}_{q} (finite field of size q) with support (set of nonzero entries) in B and rank i.

Example

$$
\mathfrak{m}_{3}(B)=\#\left\{\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right): a, b, c \in \mathbb{F}_{q} \backslash\{0\}\right\}
$$

Finite Field Matrix Counting

Definition

For a board $B \subseteq[n] \times[n]$, define $\mathfrak{m}_{i}(B, q)$ as the number of matrices in \mathbb{F}_{q} (finite field of size q) with support (set of nonzero entries) in B and rank i.

Example

$$
\begin{gathered}
\mathfrak{m}_{3}(B)=\#\left\{\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right): a, b, c \in \mathbb{F}_{q} \backslash\{0\}\right\} \\
=(q-1)^{3}
\end{gathered}
$$

Finite Field Matrix Counting

Example

$$
\mathfrak{m}_{3}(B, q)=\#\left\{\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} \\
\mid & \mid & \mid
\end{array}\right): v_{1}, v_{2}, v_{3} \in \mathbb{F}_{q}^{3} \text { are linearly independent }\right\}
$$

Finite Field Matrix Counting

Example

$$
\begin{gathered}
\mathfrak{m}_{3}(B, q)=\#\left\{\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} \\
\mid & \mid & \mid
\end{array}\right): v_{1}, v_{2}, v_{3} \in \mathbb{F}_{q}^{3} \text { are linearly independent }\right\} \\
=\left(q^{3}-1\right)\left(q^{3}-q\right)\left(q^{3}-q^{2}\right)
\end{gathered}
$$

q-rook Numbers

Proposition (Lewis-Liu-Morales-Panova-Sam-Zhang, 2011)

We have

$$
\mathfrak{m}_{i}(B, q) \equiv r_{i}(B)(q-1)^{i} \quad\left(\bmod (q-1)^{i+1}\right) .
$$

q-rook Numbers

Proposition (Lewis-Liu-Morales-Panova-Sam-Zhang, 2011)

We have

$$
\mathfrak{m}_{i}(B, q) \equiv r_{i}(B)(q-1)^{i} \quad\left(\bmod (q-1)^{i+1}\right) .
$$

Definition

Define the q-rook number $M_{i}(B, q)=\mathfrak{m}_{i}(B, q) /(q-1)^{i}$.

q-rook Numbers

Proposition (Lewis-Liu-Morales-Panova-Sam-Zhang, 2011)

We have

$$
\mathfrak{m}_{i}(B, q) \equiv r_{i}(B)(q-1)^{i} \quad\left(\bmod (q-1)^{i+1}\right)
$$

Definition

Define the q-rook number $M_{i}(B, q)=\mathfrak{m}_{i}(B, q) /(q-1)^{i}$.
$M_{i}(B, q)$ is often (surprisingly) polynomial in q. If it is, then $M_{i}(B, 1)$ must be $r_{i}(B)$.

q-rook Numbers

Example

Example

$$
\begin{aligned}
& \mathfrak{m}_{3}(B, q)=(q-1)^{3} \\
& M_{3}(B, q)=1 \\
& M_{3}(B, 1)=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{m}_{3}(B, q)=\left(q^{3}-1\right)\left(q^{3}-q\right)\left(q^{3}-q^{2}\right) \\
& M_{3}(B, q)=q^{3}(q+1)\left(q^{2}+q+1\right) \\
& M_{3}(B, 1)=6
\end{aligned}
$$

Fano Plane

Example (Stembridge 1998)

$M_{r}(B, x+1)$ is not always a polynomial: for the Fano plane F,

$$
\begin{gathered}
M_{7}(F, x+1)=(x+1)^{3}\left(x^{11}+17 x^{10}+135 x^{9}+650 x^{8}+2043 x^{7}+\right. \\
\left(4236-Z_{2}\right) x^{6}+5845 x^{5}+5386 x^{4}+3260 x^{3}+ \\
\left.1236 x^{2}+264 x+24\right)
\end{gathered}
$$

where Z_{2} is 0 if x is odd and 1 if x is even.

q-analogues

We define:

Definition

$$
\begin{aligned}
& {[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}} \\
& {[n]_{1}=1+1^{2}+\cdots+1^{n-1}=n .}
\end{aligned}
$$

q-analogues

We define:

Definition

$$
\begin{aligned}
& {[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}} \\
& {[n]_{1}=1+1^{2}+\cdots+1^{n-1}=n}
\end{aligned}
$$

Definition

$$
\begin{aligned}
{[n]]_{q} } & =[n]_{q}[n-1]_{q} \ldots[1]_{q} . \\
{[n]!_{1} } & =(n)(n-1) \ldots 1=n!.
\end{aligned}
$$

q-hit Numbers

Definition (Lewis-Morales 2020)

Define the q-hit numbers $H_{i}(B, q)$ for a board $B \subseteq[n] \times[n]$ with the equation:

$$
\sum_{i=0}^{n} H_{i}(B, q) t^{i}=q^{\binom{n}{2}} \sum_{i=0}^{n} M_{i}(B, q)[n-i]!_{q} \prod_{j=0}^{i-1}\left(t q^{-j}-1\right)
$$

q-hit Numbers

Definition (Lewis-Morales 2020)

Define the q-hit numbers $H_{i}(B, q)$ for a board $B \subseteq[n] \times[n]$ with the equation:

$$
\sum_{i=0}^{n} H_{i}(B, q) t^{i}=q^{\binom{n}{2}} \sum_{i=0}^{n} M_{i}(B, q)[n-i]!_{q} \prod_{j=0}^{i-1}\left(t q^{-j}-1\right)
$$

Compare to:
Theorem (Irving-Kaplansky 1946)

$$
\sum_{i=0}^{n} h_{i}(B) t^{i}=\sum_{i=0}^{n} r_{i}(B)(n-i)!(t-1)^{i}
$$

q-hit Numbers

Definition (Lewis-Morales 2020)

Define the q-hit numbers $H_{i}(B, q)$ for a board $B \subseteq[n] \times[n]$ with the equation:

$$
\sum_{i=0}^{n} H_{i}(B, q) t^{i}=q^{\binom{n}{2}} \sum_{i=0}^{n} M_{i}(B, q)[n-i]!_{q} \prod_{j=0}^{i-1}\left(t q^{-j}-1\right)
$$

Compare to:
Theorem (Irving-Kaplansky 1946)

$$
\sum_{i=0}^{n} h_{i}(B) t^{i}=\sum_{i=0}^{n} r_{i}(B)(n-i)!(t-1)^{i}
$$

We have

$$
H_{i}(B, q) \equiv h_{i}(B) \quad(\bmod q-1)
$$

q-hit Numbers

Example

For above board $B=[2] \times[2]$:

- $M_{0}(B)=1$.
- $M_{1}(B)=\left(\left(q^{2}-1\right)(q-1)+2\left(q^{2}-1\right)\right) /(q-1)=(q+1)^{2}$.
- $M_{2}(B)=\left(q^{2}-1\right)\left(q^{2}-q\right) /(q-1)^{2}=q(q+1)$.

q-hit Numbers

Example

For above board $B=[2] \times[2]$:

- $M_{0}(B)=1$.
- $M_{1}(B)=\left(\left(q^{2}-1\right)(q-1)+2\left(q^{2}-1\right)\right) /(q-1)=(q+1)^{2}$.
- $M_{2}(B)=\left(q^{2}-1\right)\left(q^{2}-q\right) /(q-1)^{2}=q(q+1)$.

$$
\begin{aligned}
& H_{0}(B, q)+H_{1}(B, q) t+H_{2}(B, q) t^{2} \\
& =q\left(1[2-0]!_{q}+(q+1)^{2}[2-1]!_{q}(t-1)\right. \\
& \left.+q(q+1)[2-2]!_{q}(t-1)\left(t q^{-1}-1\right)\right)
\end{aligned}
$$

q-hit Numbers

Example

For above board $B=[2] \times[2]$:

- $M_{0}(B)=1$.
- $M_{1}(B)=\left(\left(q^{2}-1\right)(q-1)+2\left(q^{2}-1\right)\right) /(q-1)=(q+1)^{2}$.
- $M_{2}(B)=\left(q^{2}-1\right)\left(q^{2}-q\right) /(q-1)^{2}=q(q+1)$.

$$
\begin{aligned}
& H_{0}(B, q)+H_{1}(B, q) t+H_{2}(B, q) t^{2} \\
& =q\left(1[2-0]!_{q}+(q+1)^{2}[2-1]!_{q}(t-1)\right. \\
& \left.+q(q+1)[2-2]!_{q}(t-1)\left(t q^{-1}-1\right)\right) .
\end{aligned}
$$

So $H_{2}(B, q)=q^{2}+q$. When $q=1$, then $H_{2}(B, 1)=2=h_{2}(B)$.

Our Work

Conjecture

For a board B, if some polynomial P of degree $k-1$ exists where $P(x)=H_{i}(B, x+1)\left(\bmod x^{k}\right)$ for all x in a particular residue class $(x \equiv a$ $(\bmod p))$ for some a and $p)$, then P has nonnegative coefficients in x.

Our Work

Conjecture

For a board B, if some polynomial P of degree $k-1$ exists where $P(x)=H_{i}(B, x+1)\left(\bmod x^{k}\right)$ for all x in a particular residue class $(x \equiv a$ $(\bmod p))$ for some a and $p)$, then P has nonnegative coefficients in x.

Theorem (C-Selover, 22+)
The above is true for $k=2$.

Acknowledgements

I would greatly like to thank:

- My mentor, Jesse Selover, for introducing the topic and for his help in guiding me through the project and offering valuable insights and advice
- Dr. Alejandro Morales, for looking over our results and giving advice for directions to pursue
- Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, and the MIT-PRIMES program, for giving me an opportunity to conduct research and helping me start this project.

References I

[Dwo98] Morris Dworkin. "An Interpretation for Garsia and Remmel'sq-Hit Numbers" . in Journal of Combinatorial Theory, Series A: 81.2 (february 1998), pages 149-175. ISSN: 00973165. DOI: $10.1006 /$ jcta.1997. 2823.
[GR86] A. M Garsia and J. B Remmel. "Q-counting rook configurations and a formula of frobenius" . in Journal of Combinatorial Theory, Series A: 41.2 (1 march 1986), pages 246-275. ISSN: 0097-3165. DOI: 10.1016/0097-3165 (86) 90083-X.
[Hag97] J. Haglund. "q-Rook Polynomials and Matrices over Finite Fields". in(1997): DOI: 10.1006/AAMA.1998.0582.
[Hal35] Philip Hall. "On Representatives of Subsets". in Journal of the London Mathematical Society: 10 (1935), pages 26-30. ISSN: 00246107. DOI: 10.1112/jlms/s1-10.37.26.
[KR46] Irving Kaplansky and John Riordan. "The problem of the rooks and its applications". inDuke Mathematical Journal: 13.2 (1 june 1946). ISSN: 0012-7094. DOI: 10.1215/S0012-7094-46-01324-5.

References II

[KLM14] Aaron J. Klein, Joel Brewster Lewis and Alejandro H. Morales. "Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams" . in Journal of Algebraic Combinatorics: An International Journal: 39 (2014), pages 429-456. ISSN: 0925-9899. DOI: 10.1007/s10801-013-0453-x.
[LM20] Joel Brewster Lewis and Alejandro H. Morales. "Rook Theory of the Finite General Linear Group" . inExperimental Mathematics: 29.3 (1 september 2020), pages 328-346. ISSN: 1058-6458, 1944-950X. DOI: 10.1080/10586458.2018.1470045.
[Lew+11] Joel Brewster Lewis andothers. "Matrices with restricted entries and q-analogues of permutations". in Journal of Combinatorics: 2.3 (2011), pages 355-395. ISSN: 21563527, 2150959X. DOI: 10.4310/JOC.2011.v2.n3.a2.
[Sta11] Richard Stanley. Enumerative Combinatorics. Cambridge University Press, 2011.
[Ste98] J. Stembridge. "Counting points on varieties over finite fields related to a conjecture of Kontsevich". in(1998): DOI: 10.1007/BF01608531.

