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Digraphs

Consider G to be a loopless directed graph with vertices

{1, . . . , n, n+ 1}. We direct edges by vertex order, so for i < j , the

edge xij is directed from i to j . Here is an example for n = 4.

1 2 3 4 5
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Netflow Vectors

Along with a digraph, we also need a ∈ Rn+1 called the netflow

vector. Each element of the netflow vector corresponds to a vertex

in the digraph as we can see applied to the previous example.

↑
a1

↑
a2

↑
a3

↑
a4

↓
a5
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Forming the Flow Polytope

↑
a1

↑
a2

↑
a3

↑
a4

↓
a5

At each vertex, we must satisfy conservation of flow. For our

example this gives the following equations:

x13 + x14 + x15 = a1

x24 + x25 = a2

x35 = a3 + x13

x45 = a4 + x14 + x24
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The CRY Polytope

The Chan-Robbins-Yuen (CRY) Polytope has the complete graph

as its digraph and netflow a = (1, 0, . . . , 0,−1).

Theorem (Zeilberger 1999)

The volume of the CRY polytope is given by

volCRYn+1 =
n−1∏
i=1

Ci

where Ci =
1

i+1

(
2i

i

)
is the ith Catalan number.
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The First Proof of the CRY Conjecture

Definition (The Morris Constant Term)

For n, a, b ∈ Z+ and c ∈ Z≥0, define the constant term

Mn(a, b, c) := CTx

n∏
i=1

(1− xi )
−bx−a+1

i

∏
1≤i<j≤n

(xj − xi )
−c ,

where CTx := CTxn . . .CTx1 .

Theorem (Zeilberger 1999)

The Morris Constant Term can be expressed as

Mn(a, b, c) =
n−1∏
j=0

Γ(a− 1 + b + (n − 1 + j) c2 )Γ(
c
2 + 1)

Γ(a+ j c2 )Γ(b + j c2 )Γ(
c
2 (j + 1) + 1)

.

Furthermore, by setting a = b = c = 1, the volume of CRYn+1 is given

by Mn(1, 1, 1) =
∏n−1

i=1 Ci where Ci is the ith Catalan number.
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Motivation For Studying Flow Polytopes

• Why do the Catalan numbers appear?

• What combinatorial relations do flow polytopes have with

other objects?
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Partitions

Example (Partition)

λ = (4, 2, 1, 1) is a partition of 8 since 4 + 2 + 1 + 1 = 8. The

length of ℓ(λ) is the number of parts, so in this case 4.

Definition (Young Diagram)

A right-justified Young Diagram contains ℓ(λ) rows. The length

of row i is given by the ith index in the partition.

Below, we see the right-justified Young Diagram for the partition

λ = (2, 1, 1) :
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Flow Polytopes of Young Partitions

From left to right: the left-justified Young diagram of λ = (2, 1, 1),

the diagram in a 5× 5 matrix, and the corresponding graph on six

vertices.

1 2 3 4 5

∗ 1

∗ 2

∗ 3

∗ 4

∗ 5
1 2 3 4 5 6

To form the flow polytope, we go as follows:

Partition → Digraph → Flow Polytope
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Flow Polytopes of Young Partitions

Definition (Family of Flow Polytopes)

For constant λ and netflow a, we define F(λ,a) as a family of flow

polytopes, containing all polytopes as n varies.

1 2 3

∗ 1

∗ 2

∗ 3

1 2 3 4

∗ 1

∗ 2

∗ 3

∗ 4

1 2 3 4 5

∗ 1

∗ 2

∗ 3

∗ 4

∗ 5

1 2 3 4 1 2 3 4 5 1 2 3 4 5 6
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The Limiting Polytope

Although n ∈ Z+ and has infinitely many values, the number of

distinct polytopes in the family F(λ,a) is actually finite.

Theorem (Mészáros-Simpson-Wellner)

For n ≥ ℓ(λ) + λ1, FG(λ,n) is integrally equivalent to

FG(λ,ℓ(λ)+λ1).

Definition (The Limiting Polytope)

For a partition λ and netflow a ∈ Zn
>0, the limiting polytope of

the family F(λ,a), denoted as F lim
(λ,a), is the polytope

FG(λ,ℓ(λ)+λ1).
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The Limiting Polytope

Theorem (Mészáros-Simpson-Wellner 2017)

Let λ be a partition and a a netflow vector. Then, the limiting

polytope of F(λ,a) has normalized volume:

volF lim
(λ,a) =

 ∑
i∈[ℓ(λ)]

λi

!
∏
i∈[ℓλ]

aλi
i

λi !
.

• What about other polytopes in the family?

• How do the volumes in the family change as the polytopes

gets closer and closer to limiting?
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The Inequalities of a Flow Polytope

Recall that a flow polytope can be expressed as a set of equations.

1 2 3 4 5 6

x13 + x14 + x15 + x16 = a1

x25 + x26 = a2

x35 + x36 = x13 + a3

x46 = x14 + a4

x56 = x15 + x25 + a5
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The Inequalities of a Flow Polytope

Recall that a flow polytope can be expressed as a set of equations.

Now, we turn them into inequalities.

x13 + x14 + x15 + x16 = a1 → x13 + x14 + x15 ≤ a1

x25 + x26 = a2 → x25 ≤ a2

x35 + x36 = x13 + a3 → x35 ≤ x13 + a3

x46 = x14 + a4

x56 = x15 + x25 + a5
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Finding Volumes From Inequalities

We have 3 inequalities:

x13 + x14 + x15 ≤ a1

x25 ≤ a2

x35 ≤ x13 + a3

In general, there are two main types of inequalities:

1 Type A:
∑

x ≤ ai

2 Type B:
∑

x ≤ ai +
∑

x
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Type A Inequalities

Assume we have a Type A Inequality:
∑

i≤n xi ≤ ak . What

geometric shape does this represent?

It’s an n-dimensional simplex with side length ak . These have

volume 1
n!a

n
k .

Example (n=2)

For x + y ≤ 5 where x , y > 0 we have a solution set as follows:

x

y

0 1 2 3 4 5
0

1

2

3

4

5
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Type B Inequalities

Assume we have a Type B Inequality:

n∑
x ≤ ai +

m∑
x .

What geometric shape does this represent?

There are actually several subcases to consider.
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Type B Inequalities

Example (Type B)

Take the inequality x35 ≤ a3 + x13. We can split this into 2

disjoint cases:

1 x35 ≤ a3

2 a3 ≤ x35 ≤ a3 + x13

Case 1 is a Type A Inequality, so we can deal with that. What

about Case 2?

Let x35 = a3 + t1. Then, if x13 = t1 + t2 for some t1, t2 > 0, the

inequality holds.
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Type B Inequalities

Recall, this flow polytope is described by the following

x13 + x14 + x15 ≤ a1

x25 ≤ a2

x35 ≤ x13 + a3

Substituting x13 = t1 + t2 from our Type B bijection, we get

t1 + t2 + x14 + x15 ≤ a1.

Now the Type A inequality now has volume 1
24a

4
1.
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Volume Formulas for Hooks

We developed a computer algorithm to deal with Type B

calculations.

1 Turn a flow polytope into a set of inequalities.

2 Take inequality n and create a list of all m cases that it has.
3 For i going from 1 to m, consider case j of inequality n.

1 If case j is a Type A inequality: add the simplex it represents

to the value.
2 Else:

1 Analyze how case j affects the other inequalities of the flow

polytope

3 Create a new flow polytope f ′ that is f with inequality n

removed and other inequalities changed based on the bijections

from case j .

4 Print output.
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Volume Formulas for Hooks

Using this algorithm, we found and proved a general formula for

volumes of the families of polytopes from hook partitions,

partitions of the form λ = (n, 1, 1, . . . , 1).

Theorem (Goel-Wellner)

Let λ = (a, 1, 1, · · · 1) where there are b 1’s and a > b. Then,

volF(G ,a+1)(a) =
b∑

j=0

1

(a+ j)!
aa+j
1 eb−j(a2, a3, . . . , ab+1)

and

volF(G ,a+1+x)(a) =
b−x∑
j=0

1

(a+ j)!
aa+j
1

x+1∏
i=2

aieb−x−j(ax+2, ax+3, . . . ab+1)

for x > 0 where ei is the ith elementary symmetric sum.
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Future Directions

The limiting process still seems like a promising avenue to gain

more combinatorial information about flow polytopes. We noticed

that often in each limit step, we will have terms in our volume

formulas vanish. In the future, we hope to study more families to

better understand how these terms vanish at each step.
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Thank you! Any questions?


