Consecutive Patterns in Coxeter Groups

Anthony Wang
Mentor: Yibo Gao
MIT PRIMES USA October Conference

15 October, 2022

Table of Contents

1 Coxeter Groups

2 Consecutive Pattern Containment

3 cc-Wilf-Equivalence

Dihedral Groups

The dihedral group of order $2 n, D_{2 n}$, is the group of symmetries of a regular n-gon, consisting of n rotations and n reflections.

Dihedral Groups

The dihedral group of order $2 n, D_{2 n}$, is the group of symmetries of a regular n-gon, consisting of n rotations and n reflections.
e

Dihedral Groups

The dihedral group of order $2 n, D_{2 n}$, is the group of symmetries of a regular n-gon, consisting of n rotations and n reflections.

How can we present the group above?

Dihedral Groups

The dihedral group of order $2 n, D_{2 n}$, is the group of symmetries of a regular n-gon, consisting of n rotations and n reflections.

How can we present the group above? One option is, $s_{1}=d_{1}$ and $s_{2}=v$, then $D_{8}=\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{4}=e\right\rangle$.

Symmetric Group

Can we have this nice structure in the presentation of other groups?

Symmetric Group

Can we have this nice structure in the presentation of other groups? Yes!

Symmetric Group

Can we have this nice structure in the presentation of other groups? Yes!

The symmetric group \mathfrak{S}_{n} is the group of all permutations of n elements. For \mathfrak{S}_{4}, using cycle notation, we see that

Symmetric Group

Can we have this nice structure in the presentation of other groups? Yes!

The symmetric group \mathfrak{S}_{n} is the group of all permutations of n elements. For \mathfrak{S}_{4}, using cycle notation, we see that

$$
(12)^{2}=(23)^{2}=(34)^{2}=e,
$$

Symmetric Group

Can we have this nice structure in the presentation of other groups? Yes!

The symmetric group \mathfrak{S}_{n} is the group of all permutations of n elements. For \mathfrak{S}_{4}, using cycle notation, we see that

$$
\begin{aligned}
(12)^{2}= & (23)^{2}=(34)^{2}=e, \\
& ((12) \circ(34))^{2}=e,
\end{aligned}
$$

Symmetric Group

Can we have this nice structure in the presentation of other groups? Yes!

The symmetric group \mathfrak{S}_{n} is the group of all permutations of n elements. For \mathfrak{S}_{4}, using cycle notation, we see that

$$
\begin{array}{r}
(12)^{2}=(23)^{2}=(34)^{2}=e, \\
((12) \circ(34))^{2}=e, \\
((12) \circ(23))^{3}=(123)^{3}=e
\end{array}
$$

Symmetric Group

Can we have this nice structure in the presentation of other groups? Yes!

The symmetric group \mathfrak{S}_{n} is the group of all permutations of n elements. For \mathfrak{S}_{4}, using cycle notation, we see that

$$
\begin{array}{r}
(12)^{2}=(23)^{2}=(34)^{2}=e \\
((12) \circ(34))^{2}=e, \\
((12) \circ(23))^{3}=(123)^{3}=e
\end{array}
$$

Let $s_{i}=(i i+1)$ be these adjacent transpositions (swaps).

Symmetric Group

Can we have this nice structure in the presentation of other groups? Yes!

The symmetric group \mathfrak{S}_{n} is the group of all permutations of n elements. For \mathfrak{S}_{4}, using cycle notation, we see that

$$
\begin{array}{r}
(12)^{2}=(23)^{2}=(34)^{2}=e, \\
((12) \circ(34))^{2}=e, \\
((12) \circ(23))^{3}=(123)^{3}=e
\end{array}
$$

Let $s_{i}=(i i+1)$ be these adjacent transpositions (swaps). Then

$$
\mathfrak{S}_{4}=\left\langle s_{1}, s_{2}, s_{3} \mid s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{3}\right)^{2}=e\right\rangle .
$$

Coxeter Groups

We have

$$
\begin{aligned}
D_{8} & =\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{4}=e\right\rangle \\
\mathfrak{S}_{4} & =\left\langle s_{1}, s_{2}, s_{3} \mid s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{3}\right)^{2}=e\right\rangle
\end{aligned}
$$

Coxeter Groups

We have

$$
\begin{aligned}
D_{8} & =\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{4}=e\right\rangle \\
\mathfrak{S}_{4} & =\left\langle s_{1}, s_{2}, s_{3} \mid s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{3}\right)^{2}=e\right\rangle
\end{aligned}
$$

Accordingly, a Coxeter group is a group with presentation,

$$
\begin{aligned}
& \left\langle s_{1}, s_{2}, \ldots, s_{n}\right| s_{i}^{2}=e \text { for } 1 \leq i \leq n, \\
& \\
& \left.\quad\left(s_{i} s_{j}\right)^{m_{i, j}}=e \text { for } 1 \leq i<j \leq n\right\rangle,
\end{aligned}
$$

where $m_{i, j} \geq 2$.

Coxeter Diagrams and Examples

We can represent Coxeter groups with Coxeter diagrams.

Coxeter Diagrams and Examples

We can represent Coxeter groups with Coxeter diagrams. For example,

$$
D_{8}=\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{4}=e\right\rangle:
$$

Coxeter Diagrams and Examples

We can represent Coxeter groups with Coxeter diagrams. For example,
$D_{8}=\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{4}=e\right\rangle:$

$$
\mathfrak{S}_{4}=\left\langle s_{1}, s_{2}, s_{3} \mid s_{1}^{2}=s_{2}^{2}=s_{3}^{2}=\left(s_{1} s_{2}\right)^{3}=\left(s_{2} s_{3}\right)^{3}=\left(s_{1} s_{3}\right)^{2}=e\right\rangle:
$$

Finite Irreducible Coxeter Groups

A Coxeter group with finite order is called finite, and a Coxeter group with connected Coxeter diagram is called irreducible.

Finite Irreducible Coxeter Groups

A Coxeter group with finite order is called finite, and a Coxeter group with connected Coxeter diagram is called irreducible.

Theorem (Coxeter 1935, [2])

All finite irreducible Coxeter groups are described by the following Coxeter diagrams:

$F_{4}: \bullet \bullet 4 \bullet \bullet H_{3}$:

Table of Contents

1 Coxeter Groups

2 Consecutive Pattern Containment

3 cc-Wilf-Equivalence

Permutations

A permutation σ consecutively contains another permutation π if there is a contiguous subsequence of σ with the same relative order as π.

Permutations

A permutation σ consecutively contains another permutation π if there is a contiguous subsequence of σ with the same relative order as π.

The permutation 132546 consecutively contains the permutation 2143,

Permutations

A permutation σ consecutively contains another permutation π if there is a contiguous subsequence of σ with the same relative order as π.

The permutation 132546 consecutively contains the permutation 2143, and the permutation 4132 consecutively contains the permutation 312.

Permutations

A permutation σ consecutively contains another permutation π if there is a contiguous subsequence of σ with the same relative order as π.

The permutation 132546 consecutively contains the permutation 2143, and the permutation 4132 consecutively contains the permutation 312.

Goal: Generalize consecutive pattern containment to Coxeter groups.

Reduced Words

Given an element w of a Coxeter group W, we can write it as a product of generators, called a word. A word of minimal length is called reduced.

Reduced Words

Given an element w of a Coxeter group W, we can write it as a product of generators, called a word. A word of minimal length is called reduced.

Example

In \mathfrak{S}_{4}, with generators $s_{i}=(i i+1)$ for $i=1,2,3$, we have the following possible words for $w=4132$:

$$
4132=s_{2} s_{3} s_{2} s_{3} s_{1} s_{3}=s_{3} s_{2} s_{1} s_{3}=s_{2} s_{3} s_{2} s_{1}
$$

Parabolic Decomposition

Given a connected subset (on the Coxeter diagram) J of the set of generators S, we let $w J$ be the longest suffix of any reduced word for w that contains only generators from J

Parabolic Decomposition

Given a connected subset (on the Coxeter diagram) J of the set of generators S, we let w_{J} be the longest suffix of any reduced word for w that contains only generators from J

Example

In \mathfrak{S}_{4}, with generators $s_{i}=(i i+1)$ for $i=1,2,3$, we have the following possible words for $w=4132$:

$$
4132=s_{2} s_{3} s_{2} s_{3} s_{1} s_{3}=s_{3} s_{2} s_{1} s_{3}=s_{2} s_{3} s_{2} s_{1} .
$$

Parabolic Decomposition

Given a connected subset (on the Coxeter diagram) J of the set of generators S, we let w_{J} be the longest suffix of any reduced word for w that contains only generators from J

Example

In \mathfrak{S}_{4}, with generators $s_{i}=(i i+1)$ for $i=1,2,3$, we have the following possible words for $w=4132$:

$$
4132=s_{2} s_{3} s_{2} s_{3} s_{1} s_{3}=s_{3} s_{2} s_{1} s_{3}=s_{2} s_{3} s_{2} s_{1}
$$

The longest suffix of a reduced word containing only generators from $J=\left\{s_{1}, s_{2}\right\}$ is from the reduced word $s_{2} s_{3} \cdot s_{2} s_{1}$. Note that $\mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{1}}=312$.

Consecutive pattern containment

Definition (W. 2022+)

Suppose π and σ are group elements of Coxeter groups W, W^{\prime} with set of generators S, S^{\prime}, respectively. Then we say that σ consecutively contains π if there exists a connected subset $J \subseteq S^{\prime}$ such that π "equals" σ_{J}. Formally, this involves an isomorphism.

Figure: Consecutive containment in Coxeter groups

Table of Contents

1 Coxeter Groups

2 Consecutive Pattern Containment

3 cc-Wilf-Equivalence

cc-Wilf-Equivalence

Definition

Given two permutations π, τ, we say that they are c-Wilf-equivalence if for every n, the number of permutations on n elements consecutively containing π is the same as the number consecutively containing τ.

cc-Wilf-Equivalence

Definition

Given two permutations π, τ, we say that they are c-Wilf-equivalence if for every n, the number of permutations on n elements consecutively containing π is the same as the number consecutively containing τ.

Accordingly, we define

Definition (W. 2022+)

We say that two Coxeter group elements π and τ of an irreducible Coxeter group are cc-Wilf-equivalence if for every finite irreducible Coxeter group W, the number of $\sigma \in W$ consecutively containing π is the same as the number consecutively containing τ.

Automorphisms Induce cc-Wilf-Equivalences

Recall that $4132=s_{2} s_{3} \cdot \mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{1}}$ consecutively contains $312=\mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{1}}$. But it also consecutively contains $231=\mathbf{s}_{1} \mathbf{s}_{2}$.

Automorphisms Induce cc-Wilf-Equivalences

Recall that $4132=s_{2} s_{3} \cdot \mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{1}}$ consecutively contains $312=\mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{1}}$. But it also consecutively contains $231=\mathbf{s}_{1} \mathbf{s}_{2}$.

Figure: Isomorphisms for consecutive containment for the Symmetric group

Automorphisms Induce cc-Wilf-Equivalences

Recall that $4132=s_{2} s_{3} \cdot \mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{1}}$ consecutively contains $312=\mathbf{s}_{\mathbf{2}} \mathbf{s}_{\mathbf{1}}$.
But it also consecutively contains $231=\mathbf{s}_{1} \mathbf{s}_{2}$.

Figure: Isomorphisms for consecutive containment for the Symmetric group

Proposition (W. 2022)

If π is an element of a Coxeter group W, and ϕ is a diagram automorphism of W, then π is cc-Wilf-equivalent to $\phi(\pi)$.

Maximal Element Induces cc-Wilf-Equivalences

If $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ is a permutation on n elements, then the complement of $\pi, \pi^{C}:=\left(n+1-\pi_{1}\right)\left(n+1-\pi_{2}\right) \cdots\left(n+1-\pi_{n}\right)$ is c-Wilf-equivalent to π since σ consecutively contains π if and only if σ^{C} consecutively contains π^{C}.

Maximal Element Induces cc-Wilf-Equivalences

If $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ is a permutation on n elements, then the complement of $\pi, \pi^{C}:=\left(n+1-\pi_{1}\right)\left(n+1-\pi_{2}\right) \cdots\left(n+1-\pi_{n}\right)$ is c-Wilf-equivalent to π since σ consecutively contains π if and only if σ^{C} consecutively contains π^{C}.
We can generalize this by writing $\pi^{C}=n(n-1) \cdots 21 \circ \pi$.

Maximal Element Induces cc-Wilf-Equivalences

If $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ is a permutation on n elements, then the complement of $\pi, \pi^{C}:=\left(n+1-\pi_{1}\right)\left(n+1-\pi_{2}\right) \cdots\left(n+1-\pi_{n}\right)$ is c-Wilf-equivalent to π since σ consecutively contains π if and only if σ^{C} consecutively contains π^{C}.
We can generalize this by writing $\pi^{C}=n(n-1) \cdots 21 \circ \pi$. Now,

Proposition (Well Known, [1])

Every finite Coxeter group W has a unique element of maximal length. We will denote this element $w_{0}(W)$.

The permutation $n(n-1) \cdots 21$ is precisely this element in \mathfrak{S}_{n}.

Maximal element induces cc-Wilf-Equivalences (cont.)

Proposition (Well Known, see [1])
Every finite Coxeter group W has a unique element of maximal length. We will denote this element $w_{0}(W)$.

Maximal element induces cc-Wilf-Equivalences (cont.)

Proposition (Well Known, see [1])
Every finite Coxeter group W has a unique element of maximal length. We will denote this element $w_{0}(W)$.

Using this,
Proposition (W. 2022)
Let π be an element of a Coxeter group W. Then π is cc-Wilf-equivalent to $\omega_{0}(W) \pi$.

Nontrivial Families of cc-Wilf-Equivalence classes

Theorem (Duane—Remmel 2011 [4], Dotsenko—Khoroshkin 2013 [3)

We say that a permutation π is non-overlapping if two of its occurrences share in any other permutation σ can share at most one position. Then the first and last entries of a non-overlapping permutation determines its c-Wilf-equivalence class.

The idea is that π and τ are essentially interchangeable wherever they occur.

Nontrivial Families of cc-Wilf-Equivalence classes

Theorem (Duane—Remmel 2011 [4], Dotsenko—Khoroshkin 2013 [3])

We say that a permutation π is non-overlapping if two of its occurrences share in any other permutation σ can share at most one position. Then the first and last entries of a non-overlapping permutation determines its c-Wilf-equivalence class.

The idea is that π and τ are essentially interchangeable wherever they occur. Skipping over a lot of details, we prove the following:

Theorem (W. 2022)

If π and τ are both strongly difference-disjoint and automorphic-equivalent, then they are cc-Wilf-equivalent.

Thank you to ...

My mentor, Yibo Gao

Thank you to ...

My mentor, Yibo Gao
Sergi Elizalde for giving insight into past results in consecutive pattern containment for permutations

Thank you to ...

My mentor, Yibo Gao
Sergi Elizalde for giving insight into past results in consecutive pattern containment for permutations

The MIT PRIMES USA program and its organizers, especially Dr. Tanya Khovanova, Dr. Slava Gerovitch, and Prof. Pavel Etingof, for this opportunity

Thank you to ...

My mentor, Yibo Gao
Sergi Elizalde for giving insight into past results in consecutive pattern containment for permutations

The MIT PRIMES USA program and its organizers, especially Dr. Tanya Khovanova, Dr. Slava Gerovitch, and Prof. Pavel Etingof, for this opportunity

My parents for their continued support.

References

[1] Anders Björner and Francesco Brenti.
Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics.
Springer, New York, 2005.
[2] H. S. M. Coxeter.
The complete enumeration of finite groups of the form
$r_{i}^{2}=\left(r_{i} r_{j}\right)^{k_{i j}}=1$.
Journal of the London Mathematical Society, s1-10(1):21-25, 1935.
[3] Vladimir Dotsenko and Anton Khoroshkin.
Shuffle algebras, homology, and consecutive pattern avoidance.
Algebra \& Number Theory, 7(3):673-700, 2013.
[4] Adrian Duane and Jeffrey B. Remmel.
Minimal overlapping patterns in colored permutations.
Electron. J. Comb., 18, 2011.

