# On the Uniqueness of Certain Types of Circle Packings on Translation Surfaces 

Nilay Mishra<br>Mentored by Prof. Sergiy Merenkov<br>MIT PRIMES-USA

October 15, 2022

## Overview

(1) Translation Surfaces
(2) Circle Packings
(3) Bringing it All Together
(4) Acknowledgements

## What is a translation surface?

- Folding a square.


## What is a translation surface?

- Folding a square.



## What is a translation surface?

- Folding a hexagon.


## What is a translation surface?

- Folding a hexagon.


Circle Packings on Translation Surfaces

## What is a translation surface?

- Folding a hexagon.

- Animation Link


## What is a translation surface?

- Folding an octagon.


## What is a translation surface?

- Folding an octagon.



## What is a translation surface?

- Start with a polygon that has an even number of sides.
- Opposite sides are parallel and of equal length.
- Identify opposite sides together and fold along them successively.


## What is a translation surface?

- Start with a polygon that has an even number of sides.
- Opposite sides are parallel and of equal length.
- Identify opposite sides together and fold along them successively.



## Cone Points

- Translation surfaces contain cone points (singularities).


## Cone Points

- Translation surfaces contain cone points (singularities).
- Angle at cone point of the form $2 \pi \cdot(k+1)$ for some $k>0$.


## Cone Points

- Translation surfaces contain cone points (singularities).
- Angle at cone point of the form $2 \pi \cdot(k+1)$ for some $k>0$.
- Neighborhood around a cone point is isometric to neighborhood around the origin in the following diagram:



## Example of a Cone Point



## Degrees and Strata

- Suppose that the $n$ cone points have degrees $d_{1}, d_{2}, \cdots, d_{n}$. Then:

$$
\sum_{i=1}^{n} d_{i}=2 g-2
$$

where $g>1$ is the genus of the translation surface.

## Degrees and Strata

- Suppose that the $n$ cone points have degrees $d_{1}, d_{2}, \cdots, d_{n}$. Then:

$$
\sum_{i=1}^{n} d_{i}=2 g-2
$$

where $g>1$ is the genus of the translation surface.

- Let $g>1$ and consider a partition $\kappa$ of $2 g-2$. We define a stratum $\mathcal{H}(\kappa)$ to be a collection of translation surfaces such that the order of each cone point is given by $\kappa$.


## Genus Two Strata

- When $g=2$, we have two possible cases.
- One cone point of degree 2 , denoted $\mathcal{H}(2)$ or two cone points of degree 1 , denoted $\mathcal{H}(1,1)$.


## Genus Two Strata

- When $g=2$, we have two possible cases.
- One cone point of degree 2 , denoted $\mathcal{H}(2)$ or two cone points of degree 1 , denoted $\mathcal{H}(1,1)$.
- Every translation surface $M$ of genus 2 is hyperelliptic (i.e. admits a conformal involution $\eta: M \rightarrow M$ with exactly six fixed points).


## Doubled Slit Torus

## Theorem (McMullen, 2007)

Let $M$ be a translation surface of genus 2. Then $M$ contains a geodesic $J$ such that $J \neq \eta(J)$ and splits along $J \cup \eta(J)$ into the connected sum of two slit tori.

## Doubled Slit Torus

## Theorem (McMullen, 2007)

Let $M$ be a translation surface of genus 2 . Then $M$ contains a geodesic $J$ such that $J \neq \eta(J)$ and splits along $J \cup \eta(J)$ into the connected sum of two slit tori.


## Doubled Slit Torus



## Triangulations

- A triangulation of a surface $S$ is a locally finite decomposition of $S$ into a collection of topologically closed triangles such that any two either:
- are entirely disjoint
- intersect at one or two vertices
- intersect at a single edge


## Triangulations

- A triangulation of a surface $S$ is a locally finite decomposition of $S$ into a collection of topologically closed triangles such that any two either:
- are entirely disjoint
- intersect at one or two vertices
- intersect at a single edge



## Triangulations

- A triangulation of a surface $S$ is a locally finite decomposition of $S$ into a collection of topologically closed triangles such that any two either:
- are entirely disjoint
- intersect at one or two vertices
- intersect at a single edge

- Triangulations are allowed to be degenerate (loops and bigons).


## Contacts Graph

- A contacts graph is a graph with $n$ vertices $v_{1}, v_{2}, \ldots, v_{n}$ corresponding to the generalized circles $c_{1}, c_{2}, \ldots, c_{n}$ such that $v_{i}$ and $v_{j}$ are connected if and only if $c_{i}$ and $c_{j}$ are externally tangent


## Contacts Graph

- A contacts graph is a graph with $n$ vertices $v_{1}, v_{2}, \ldots, v_{n}$ corresponding to the generalized circles $c_{1}, c_{2}, \ldots, c_{n}$ such that $v_{i}$ and $v_{j}$ are connected if and only if $c_{i}$ and $c_{j}$ are externally tangent



## Circle Packing

- A circle packing is a configuration of generalized circles on the surface such that the contacts graph is a triangulation.



## Circle Packing Theorem

## Theorem (Koebe-Andreev-Thurston) <br> - Let $K$ be a simple planar graph.

## Circle Packing Theorem

## Theorem (Koebe-Andreev-Thurston)

- Let $K$ be a simple planar graph.
- Then there exists a collection of topological circles $\mathcal{P}_{K}$ on the Riemann sphere with $K$ as its contacts graph.


## Circle Packing Theorem

## Theorem (Koebe-Andreev-Thurston)

- Let $K$ be a simple planar graph.
- Then there exists a collection of topological circles $\mathcal{P}_{K}$ on the Riemann sphere with $K$ as its contacts graph.
- This circle configuration is univalent and unique (up to the Möbius transformation).


## Guiding Questions

- For a given triangulation of a translation surface in $\mathcal{H}(1,1)$, are circle packings unique up to the hyperelliptic involution?


## Guiding Questions

- For a given triangulation of a translation surface in $\mathcal{H}(1,1)$, are circle packings unique up to the hyperelliptic involution?
- Given an arbitrary triangulation $T$ of a genus 2 translation surface $M$, can one always find a circle packing of some $M^{\prime}$ with contacts graph $T$ such that $M$ and $M^{\prime}$ lie in the same stratum?


## Our Work

## Theorem

- Suppose that there exists a circle packing on the doubled slit torus with an associated triangulation.


## Our Work

## Theorem

- Suppose that there exists a circle packing on the doubled slit torus with an associated triangulation.
- Suppose that the packing contains two externally tangent double circles $C_{1}$ and $C_{2}$ such that the slit connects the centers of the two circles.


## Our Work

## Theorem

- Suppose that there exists a circle packing on the doubled slit torus with an associated triangulation.
- Suppose that the packing contains two externally tangent double circles $C_{1}$ and $C_{2}$ such that the slit connects the centers of the two circles.
- If $C_{1}$ and $C_{2}$ are fixed in place on the doubled slit torus, the packing can vary in only finitely many ways.


## Diagram



## I would like to thank...

- Prof. Sergiy Merenkov (mentor) for his immense assistance and guidance throughout the research process
- PRIMES-USA research program (Prof. Pavel Etingof and Dr. Slava Gerovitch) for organizing this amazing research opportunity
- Dr. Tanya Khovanova for feedback on papers and for doing a practice run-through
- Prof. Pat Hooper for providing reading materials on translation surfaces and related concpets
- My parents


## References I

[1] Andrew Bouwman and Jaroslaw Kwapisz.
Expository article: Young person's guide to translation surfaces of genus two: Mcmullen's connected sum theorem.
Rocky Mountain Journal of Mathematics, 43:37-53, 2013.
[2] Daniel Massart.
A short introduction to translation surfaces, veech surfaces, and teichmüller dynamics.
Surveys in Geometry I, 2022.
[3] Curtis T. McMullen.
Dynamics of $S L_{2}(\mathbb{R})$ over moduli space in genus two. Annals of Mathematics, 165:397-456, 2007.

## References II

[4] K. Stephenson.
Introduction to Circle Packing: The Theory of Discrete Analytic Functions.
Cambridge University Press, 2005.
[5] Alex Wright.
Translation surfaces and their orbit closures: An introduction for a broad audience, 2014.
[6] David Zmiaikou.
Origamis and permutation groups. 2011.

