< □ > < 同 > < 回 > < Ξ > < Ξ

MIT PRIMES-USA

On the Uniqueness of Certain Types of Circle Packings on Translation Surfaces

Nilay Mishra

Mentored by Prof. Sergiy Merenkov

MIT PRIMES-USA

October 15, 2022

Nilay Mishra

Overview

1 Translation Surfaces

2 Circle Packings

Bringing it All Together

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

MIT PRIMES-USA

Nilay Mishra

Acknowledgements 00

What is a translation surface?

• Folding a square.

MIT PRIMES-USA

Nilay Mishra

Acknowledgements 00

What is a translation surface?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

MIT PRIMES-USA

Nilay Mishra

Acknowledgements 00

What is a translation surface?

• Folding a hexagon.

MIT PRIMES-USA

Nilay Mishra

Acknowledgements 00

What is a translation surface?

• Folding a hexagon.

<ロト < 部ト < 注ト < 注ト 注 のへの MIT PRIMES-USA

Nilay Mishra

Acknowledgements 00

What is a translation surface?

• Folding a hexagon.

• Animation Link

・ロト・日本・日本・日本・日本・日本

MIT PRIMES-USA

Nilay Mishra

Acknowledgements

What is a translation surface?

• Folding an octagon.

MIT PRIMES-USA

Nilay Mishra

Circle Packin

Bringing it All Together

Acknowledgements 00

What is a translation surface?

• Folding an octagon.

Nilay Mishra

MIT PRIMES-USA

• • • • • • • • • • • •

MIT PRIMES-USA

What is a translation surface?

- Start with a polygon that has an even number of sides.
- Opposite sides are parallel and of equal length.
- Identify opposite sides together and fold along them successively.

Nilay Mishra

What is a translation surface?

- Start with a polygon that has an even number of sides.
- Opposite sides are parallel and of equal length.
- Identify opposite sides together and fold along them successively.

< D > < A > < B > < B >

Circle Packings on Translation Surfaces

Nilav Mishra

Cone Points

• Translation surfaces contain cone points (singularities).

MIT PRIMES-USA

Nilay Mishra

Cone Points

- Translation surfaces contain cone points (singularities).
- Angle at cone point of the form $2\pi \cdot (k+1)$ for some k > 0.

イロト イポト イヨト イヨ

MIT PRIMES-USA

< □ > < 同 > < Ξ > <</p>

MIT PRIMES-USA

Cone Points

- Translation surfaces contain cone points (singularities).
- Angle at cone point of the form $2\pi \cdot (k+1)$ for some k > 0.
- Neighborhood around a cone point is isometric to neighborhood around the origin in the following diagram:

Acknowledgements 00

Example of a Cone Point

・ロト・日本・日本・日本・日本・日本

Nilay Mishr

イロト イポト イヨト イヨ

MIT PRIMES-USA

Degrees and Strata

• Suppose that the *n* cone points have degrees d_1, d_2, \dots, d_n . Then:

$$\sum_{i=1}^n d_i = 2g - 2$$

where g > 1 is the genus of the translation surface.

Nilay Mishra

イロト イポト イヨト イヨト

MIT PRIMES-USA

Degrees and Strata

• Suppose that the *n* cone points have degrees d_1, d_2, \dots, d_n . Then:

$$\sum_{i=1}^n d_i = 2g - 2$$

where g > 1 is the genus of the translation surface.

Let g > 1 and consider a partition κ of 2g - 2. We define a stratum H(κ) to be a collection of translation surfaces such that the order of each cone point is given by κ.

• • • • • • • • • • • •

MIT PRIMES-USA

Genus Two Strata

- When g = 2, we have two possible cases.
- One cone point of degree 2, denoted H(2) or two cone points of degree 1, denoted H(1, 1).

Nilay Mishra

< □ > < 同 > < Ξ > <</p>

MIT PRIMES-USA

Genus Two Strata

- When g = 2, we have two possible cases.
- One cone point of degree 2, denoted H(2) or two cone points of degree 1, denoted H(1, 1).
- Every translation surface M of genus 2 is hyperelliptic (i.e. admits a conformal involution $\eta: M \to M$ with exactly six fixed points).

イロト イボト イヨト イヨ

MIT PRIMES-USA

Doubled Slit Torus

Theorem (McMullen, 2007)

Let M be a translation surface of genus 2. Then M contains a geodesic J such that $J \neq \eta(J)$ and splits along $J \cup \eta(J)$ into the connected sum of two slit tori.

Nilay Mishra

Doubled Slit Torus

Theorem (McMullen, 2007)

Let M be a translation surface of genus 2. Then M contains a geodesic J such that $J \neq \eta(J)$ and splits along $J \cup \eta(J)$ into the connected sum of two slit tori.

イロト イボト イヨト イヨ

Nilay Mishra

Circle Packings

Bringing it All Together

Acknowledgements 00

Doubled Slit Torus

Nilay Mishra

イロト イボト イヨト イヨ

MIT PRIMES-USA

Triangulations

- A triangulation of a surface S is a locally finite decomposition of S into a collection of topologically closed triangles such that any two either:
 - are entirely disjoint
 - intersect at one or two vertices
 - intersect at a single edge

Triangulations

- A triangulation of a surface S is a locally finite decomposition of S into a collection of topologically closed triangles such that any two either:
 - are entirely disjoint
 - intersect at one or two vertices
 - intersect at a single edge

MIT PRIMES-USA

Nilay Mishra

MIT PRIMES-USA

Triangulations

- A triangulation of a surface S is a locally finite decomposition of S into a collection of topologically closed triangles such that any two either:
 - are entirely disjoint
 - intersect at one or two vertices
 - intersect at a single edge

• Triangulations are allowed to be degenerate (loops and bigons).

Nilay Mishra

Contacts Graph

• A contacts graph is a graph with *n* vertices $v_1, v_2, ..., v_n$ corresponding to the generalized circles $c_1, c_2, ..., c_n$ such that v_i and v_j are connected if and only if c_i and c_j are externally tangent

• • • • • • • • • • • •

MIT PRIMES-USA

Contacts Graph

• A contacts graph is a graph with *n* vertices $v_1, v_2, ..., v_n$ corresponding to the generalized circles $c_1, c_2, ..., c_n$ such that v_i and v_j are connected if and only if c_i and c_j are externally tangent

MIT PRIMES-USA

Nilay Mishra

Circle Packing

• A *circle packing* is a configuration of generalized circles on the surface such that the contacts graph is a triangulation.

Nilay Mishra

・ロト ・回 ト ・ ヨト ・

Acknowledgements

MIT PRIMES-USA

Circle Packing Theorem

Theorem (Koebe-Andreev-Thurston)

• Let K be a simple planar graph.

Nilay Mishra

イロト イヨト イヨト イ

MIT PRIMES-USA

Circle Packing Theorem

Theorem (Koebe-Andreev-Thurston)

- Let K be a simple planar graph.
- Then there exists a collection of topological circles \mathcal{P}_K on the Riemann sphere with K as its contacts graph.

Nilay Mishra

• • • • • • • • • • • •

MIT PRIMES-USA

Circle Packing Theorem

Theorem (Koebe-Andreev-Thurston)

- Let K be a simple planar graph.
- Then there exists a collection of topological circles \mathcal{P}_K on the Riemann sphere with K as its contacts graph.
- This circle configuration is univalent and unique (up to the Möbius transformation).

Nilay Mishra

• • • • • • • • • • • •

MIT PRIMES-USA

Guiding Questions

• For a given triangulation of a translation surface in $\mathcal{H}(1,1)$, are circle packings unique up to the hyperelliptic involution?

Nilay Mishra

Image: A math a math

MIT PRIMES-USA

Guiding Questions

- For a given triangulation of a translation surface in $\mathcal{H}(1, 1)$, are circle packings unique up to the hyperelliptic involution?
- Given an arbitrary triangulation *T* of a genus 2 translation surface *M*, can one always find a circle packing of some *M'* with contacts graph *T* such that *M* and *M'* lie in the same stratum?

(a)

MIT PRIMES-USA

Our Work

Theorem

• Suppose that there exists a circle packing on the doubled slit torus with an associated triangulation.

Nilay Mishra

イロト イポト イヨト イヨト

MIT PRIMES-USA

Our Work

Theorem

- Suppose that there exists a circle packing on the doubled slit torus with an associated triangulation.
- Suppose that the packing contains two externally tangent double circles C₁ and C₂ such that the slit connects the centers of the two circles.

Nilay Mishra

イロト イポト イヨト イヨト

MIT PRIMES-USA

Our Work

Theorem

- Suppose that there exists a circle packing on the doubled slit torus with an associated triangulation.
- Suppose that the packing contains two externally tangent double circles C₁ and C₂ such that the slit connects the centers of the two circles.
- If C₁ and C₂ are fixed in place on the doubled slit torus, the packing can vary in only finitely many ways.

Bringing it All Together $\circ \circ \bullet$

Acknowledgements 00

Diagram

・ロマ・山マ・山マ・山マ・ション

Nilay Mishra

イロト イボト イヨト イヨ

MIT PRIMES-USA

I would like to thank ...

- Prof. Sergiy Merenkov (mentor) for his immense assistance and guidance throughout the research process
- PRIMES-USA research program (Prof. Pavel Etingof and Dr. Slava Gerovitch) for organizing this amazing research opportunity
- Dr. Tanya Khovanova for feedback on papers and for doing a practice run-through
- Prof. Pat Hooper for providing reading materials on translation surfaces and related concpets
- My parents

(日)

MIT PRIMES-USA

References I

[1] Andrew Bouwman and Jaroslaw Kwapisz.

Expository article: Young person's guide to translation surfaces of genus two: Mcmullen's connected sum theorem. *Rocky Mountain Journal of Mathematics*, 43:37–53, 2013.

[2] Daniel Massart.

A short introduction to translation surfaces, veech surfaces, and teichmüller dynamics.

Surveys in Geometry I, 2022.

[3] Curtis T. McMullen. Dynamics of SL₂(ℝ) over moduli space in genus two. Annals of Mathematics, 165:397–456, 2007.

< D > < A > < B > < B >

MIT PRIMES-USA

References II

[4] K. Stephenson.

Introduction to Circle Packing: The Theory of Discrete Analytic Functions. Cambridge University Press, 2005.

Cambridge University Press, 2

[5] Alex Wright.

Translation surfaces and their orbit closures: An introduction for a broad audience, 2014.

[6] David Zmiaikou.

Origamis and permutation groups. 2011.