A TURÁN-TYPE PROBLEM IN MIXED GRAPHS

Edward Yu Mentor: Nitya Mani

Lakeside School

October 15, 2022 MIT PRIMES Conference

1. TURÁN PROBLEMS

- Mantel's Theorem
- Turán's Theorem

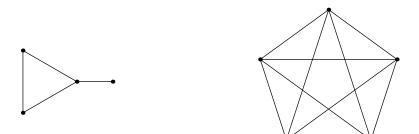
2. Turán Problems on Mixed Graphs

- Mixed Graphs & Subgraphs
- Definition of $\theta(F)$
- Main Results
- Future Directions

Graphs

DEFINITION

A graph is a collection of vertices and edges.



EXTREMAL GRAPH THEORY

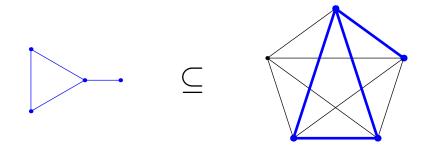
How large/small can a graph be if it satisfies some given structural constraint?

Edward Yu

A TURÁN PROBLEM IN MIXED GRAPHS

10/15/2022

For graphs F and G, call F a *subgraph* of G (denoted $F \subseteq G$) if the vertices and edges of F are a subset of those of G.



For a graph with v vertices and e edges, define its edge density $e/\binom{v}{2}$.

TURÁN-TYPE PROBLEM

Let F be a graph. What is the asymptotically maximal edge density of a graph that does not contain F as a subgraph?

Such a graph is called *F*-free.

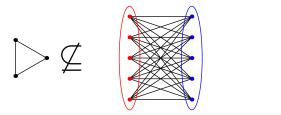
THEOREM (1907, MANTEL)

A triangle-free graph with n vertices contains at most $\frac{n^2}{4}$ edges.

1

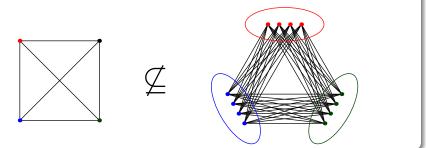
This means the Turán density of the triangle is

$$\lim_{n\to\infty}\frac{n^2}{4}/\binom{n}{2}=\frac{1}{2}.$$

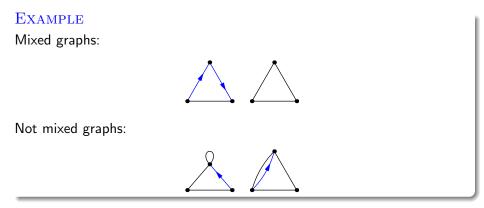


THEOREM (TURÁN, 1941)

The Turán density of the complete graph K_r is $\frac{r-2}{r-1}$.

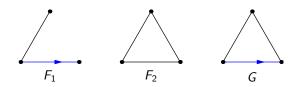


In a *mixed graph*, edges can either be *directed* or *undirected*.



F is a *subgraph* of G if F can be obtained from G by deleting vertices, deleting edges, and forgetting edge directions.

EXAMPLE



 F_1 and F_2 are subgraphs of G. F_1 is not a subgraph of F_2 , or vice versa.

Define the mixed graph

Problem

What is the maximal number of edges in a $\overrightarrow{K_3}$ -free graph?

Solution

As many as we can fit: $\binom{n}{2}$, where *n* is the number of vertices.



So perhaps this is not the question we want to ask!

Let F be a mixed graph. Define the *Turán density coefficient* $\theta(F)$ as the largest value of ρ such that

$$\operatorname{undir}(G) + \rho \cdot \operatorname{dir}(G) \leq \binom{n}{2} + o(n^2)$$

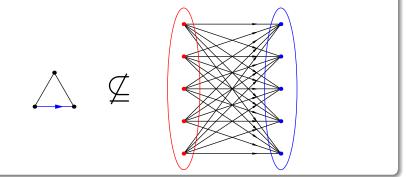
over all F-free n-vertex mixed graphs G.

This characterizes the balance between directed and undirected edges.

MANTEL'S THEOREM FOR MIXED GRAPHS

Theorem

$$\theta(\overrightarrow{K_3}) = 2.$$

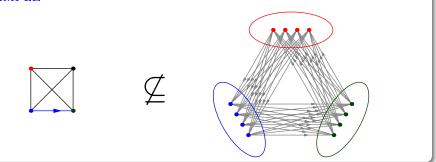


TURÁN'S THEOREM FOR MIXED GRAPHS

Theorem

For all r,

$$\theta(\overrightarrow{K_r}) = \frac{r-1}{r-2}.$$



MAIN RESULTS

• A tight inequality for $\theta(F)$ in terms of its chromatic number: either $\theta(F) = 1, \theta(F) = \infty$, or

$$1+\frac{1}{\chi(F)} \leq \theta(F) \leq 1+\frac{1}{\chi(F)-2}.$$

- A variational characterization for $\theta(F)$, with "simple" asymptotically extremal graphs.
- There exists F such that $\theta(F)$ is irrational.
- $\theta(F)$ is an *algebraic number* for all *F*.
- For any k ∈ N there exists a family of mixed graphs F such that θ(F) has algebraic degree k.

- Is it possible to achieve all (or arbitrarily high) algebraic degrees with single graphs *F*?
- What is the set of possible values of $\theta(F)$?
- Generalize to *partially-directed hypergraphs*; applications to the *k*-SAT counting problem.

Special thanks to:

- Nitya Mani, my PRIMES mentor, for suggesting the topic and guiding me through this project with feedback and references;
- Dr. Yufei Zhao, for a helpful discussion;
- Dr. Gerovitch, Dr. Etingof, Dr. Khovanova, and the rest of the PRIMES organizers, for making such a program available and providing me an opportunity to conduct math research.

- József Balogh et al. "Nearly all *k*-SAT functions are unate". arXiv:2209.04894.
 2022. DOI: 10.48550/ARXIV.2209.04894.
- [2] W. G. Brown, P. Erdős, and M. Simonovits. "Extremal Problems for Directed Graphs". In: Journal of Combinatorial Theory (B) 15 (1973), pp. 77–93.
- [3] Dingding Dong, Nitya Mani, and Yufei Zhao. "Enumerating k-SAT Functions". arXiv:2107.09233. 2021. DOI: 10.48550/arXiv.2107.09233.
- [4] W. Mantel. "Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff)". In: Wiskundige Opgaven 10 (1907), pp. 60–61.
- [5] P. Turán. "On an extremal problem in graph theory (in Hungarian)". In: Mat. Fiz. Lapok 48 (1941), pp. 436–452.