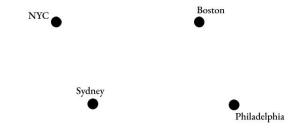
Pointed fusion categories over non-algebraically-closed fields

Sophie Zhu

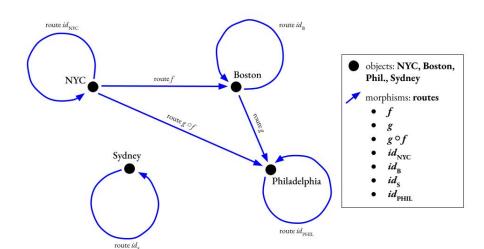
Mentors: Prof. Julia Plavnik (IU) & Dr. Sean Sanford (OSU)

October 15, 2022 MIT PRIMES Conference

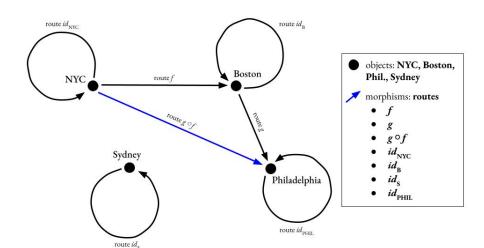
Category of Cities & Trains



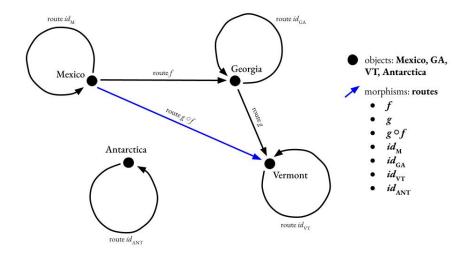
Category of Cities & Trains



Category of Cities & Trains



Category of Butterfly Locations & Migration Patterns



Why study categories?

- If we prove a statement about categories of locations & transportation between them in general, then that statement holds for cities & train routes, butterflies & migration, and more.
- Categories provide a consistent and unifying language for mathematics.

Why study categories?

- If we prove a statement about categories of locations & transportation between them in general, then that statement holds for cities & train routes, butterflies & migration, and more.
- Categories provide a consistent and unifying language for mathematics.
- If we prove that a certain type of category always has property A, then we instantly learn about a huge crop of mathematical objects.

Objects in the category A always satisfy **Property B** $\mathbb{Z}, \mathbb{R}, \text{ and the permutations of a Rubik's cube} \\
\text{(objects in the category of groups)} \\
\text{satisfy the$ **Isomorphism Theorems** $}$

Formal Definition of a Category

Definition

A category C consists of

- ullet a set of objects $\mathsf{Ob}(\mathcal{C})$ and
- for any two objects A and B, a set of morphisms C(A, B),

where composition exists and is associative, and each object has an identity morphism.

Formal Definition of a Category

Definition

A category $\mathcal C$ consists of

- ullet a set of objects $\mathsf{Ob}(\mathcal{C})$ and
- for any two objects A and B, a set of morphisms $\mathcal{C}(A,B)$,

where composition exists and is associative, and each object has an identity morphism.

Example

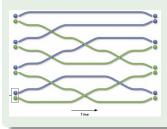
Let k be a field. The category k-**Vec** consists of

- finite-dimensional k-vector spaces as objects. For instance, $\{0\}$ and k^2 are objects.
- k-linear maps as morphisms. A map f from an k-vector space V to an k-vector space W is k-linear if $c \cdot f(x) = f(cx)$ for any $c \in k$.
 - ullet For instance, the map $f:\mathbb{R}^2 \to \mathbb{R}^2$ defined by f(a,b)=(2a,2b) is an \mathbb{R} -linear map.

Why study fusion categories?

Example (Topological Quantum Computing)

- Quantum computers use qubits, which can be represented by anyons. Operations on these qubits are performed by braiding anyons.
- Anyons can be represented as objects in a category.



- Anyons come in pairs; we need each object X to have an "inverse."
- \bullet Two anyons can fuse into a new anyon; we need operations \oplus and $\otimes.$

$$X \otimes Y := 2Z \oplus 3W$$

tells us that $\frac{2}{5}$ -ths of the time, they fuse into the Z anyon; otherwise, they fuse into the W anyon.

Question

Anyon systems can be represented by **fusion categories**. Can we classify fusion categories over any field?

Abelian Categories

An **abelian category** is essentially a category whose objects and morphisms can be "added" with \oplus .

Definition (vague)

- In a category, a nonzero object X is **simple** if it has no subobjects except the zero object or itself.
- An abelian category is **semisimple** if every object is the direct sum of finitely many simple objects.

Simple objects provide a "basis" for semisimple categories.

Example of a Semisimple Abelian Category: k-Vec_G

The category k-**Vec**_G is nearly identical to k-**Vec**, except its objects are now G-graded.

ullet Let G be a group. The objects are still finite-dimensional k-vector spaces V; now, they are also equipped with a decomposition

$$V = \bigoplus_{g \in G} V_g$$

where V_g are subspaces of V.

• For instance, when $k = \mathbb{R}$ and $G = (\{0,1\}, +_2)$, an object could be $\mathbb{R} \oplus \mathbb{R}^2$.

Index g in G	0	1
Subspace V_g	R	R²

Example of a Semisimple Abelian Category: k-Vec_G

The category k-**Vec**_G is nearly identical to k-**Vec**, except its objects are now G-graded.

ullet Let G be a group. The objects are still finite-dimensional k-vector spaces V; now, they are also equipped with a decomposition

$$V = \bigoplus_{g \in G} V_g$$

where V_g are subspaces of V.

• For instance, when $k = \mathbb{R}$ and $G = (\{0,1\}, +_2)$, an object could be $\mathbb{R} \oplus \mathbb{R}^2$.

Index g in G	0	1
Subspace V_g	R	R²

• Its simple objects are δ_g for all $g \in G$, defined as

$$(\delta_g)_h = \begin{cases} 0 & \text{if } g \neq h \\ k & \text{if } g = h \end{cases}$$

 \bullet It is semisimple because we can write $V=\oplus_{g\in G} \oplus_{i=1}^{\dim V_g} \delta_g.$

Monoidal Categories

Definition (vague)

A monoidal category is essentially a category $\mathcal C$ equipped with a multiplication operation and a rule for associativity under such multiplication; that is, it is equipped with

- a tensor product $\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$,
- the associativity constraint $\alpha_{X,Y,Z}:(X\otimes Y)\otimes Z\to X\otimes (Y\otimes Z)$ for any $X,Y,Z\in \mathsf{Ob}(\mathcal{C}),$ and
- an object $1 \in \mathsf{Ob}(\mathcal{C})$,

and satisfies the **pentagon axiom**, which is a condition on $\alpha_{X,Y,Z}$.

Monoidal Categories

Definition (vague)

A monoidal category is essentially a category $\mathcal C$ equipped with a multiplication operation and a rule for associativity under such multiplication; that is, it is equipped with

- a tensor product $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$,
- the associativity constraint $\alpha_{X,Y,Z}: (X \otimes Y) \otimes Z \to X \otimes (Y \otimes Z)$ for any $X,Y,Z \in \mathsf{Ob}(\mathcal{C})$, and
- an object $1 \in \mathsf{Ob}(\mathcal{C})$,

and satisfies the **pentagon axiom**, which is a condition on $\alpha_{X,Y,Z}$.

Example

We define the monoidal category $k\text{-}\mathbf{Vec}_G$. (We define the following only on simple objects due to its semisimple-ness.)

- The tensor product is defined by $\delta_g \otimes \delta_h = \delta_{gh}$.
- The associativity map is defined by $\alpha_{\delta_g,\delta_h,\delta_i} := \mathrm{id}_{\delta_{ghi}} : (\delta_g \otimes \delta_h) \otimes \delta_i \to \delta_g \otimes (\delta_h \otimes \delta_i).$
- The unit object $\mathbb{1}$ is δ_e , where e is the identity element in G.

Example of a Monoidal Category: k-**Vec** $_G^\omega$

We define the monoidal category k-**Vec** $_G^{\omega}$, where $\omega \in Z^3(G, k^*)$.

• The set $Z^3(G, k^*)$ consists of all **3-cocycles**, which are the maps $\omega: G \times G \times G \to k^*$ satisfying the following condition for any $g, h, i, j \in G$.

$$\omega(h,i,j)\omega(g,h,ij)\omega(gh,i,j)=\omega(g,hi,j)\omega(g,h,i)$$

The monoidal category k- $\mathbf{Vec}_{G}^{\omega}$ is identical to k- \mathbf{Vec}_{G} , except for its associativity isomorphisms. Instead, for any $g, h, i \in G$, we define

$$\alpha_{\delta_{g},\delta_{h},\delta_{i}} := \omega(g,h,i) \cdot \mathsf{id}_{\delta_{ghi}} : (\delta_{g} \otimes \delta_{h}) \otimes \delta_{i} \to \delta_{g} \otimes (\delta_{h} \otimes \delta_{i}).$$

The fact that ω is a 3-cocycle implies our defined α satisfies the pentagon axiom, as necessary.

Pointed Fusion Categories

Definition

A fusion category over a field k is a monoidal, abelian, semisimple, k-linear, rigid, and finite category whose monoidal unit object $\mathbb{1}$ is simple.

Definition (vague)

A category is **pointed** if each of its simple objects X is invertible; in simple terms, there exists an object Y such that $X \otimes Y \cong \mathbb{1}$. Thus, the simple objects in a pointed category \mathcal{C} form a group; call it $G(\mathcal{C})$.

Example

An example of a pointed fusion category is $k\text{-Vec}_G^\omega$. The "inverse" of δ_g is $\delta_{g^{-1}}$.

Known Results

Theorem

Let k be an algebraically closed field. Then $\mathcal C$ is a pointed fusion category over k if and only if $\mathcal C$ is equivalent to $k ext{-}\mathbf{Vec}_G^\omega$ for some group G and $\omega\in Z^3(G,k^*)$.

The equivalence is essentially defined as follows.

$$\mathcal{C} \longrightarrow k\text{-Vec}_G^\omega$$

simple objects:
$$g \longrightarrow \delta_{\sigma}$$

associativity isomorphisms:
$$\alpha_{g,h,i} \longrightarrow \alpha_{\delta_g,\delta_h,\delta_i} = \omega(g,h,i) \cdot \mathrm{id}_{\delta_{ghi}}$$

Our Results

Research Question

Can we classify pointed fusion categories when k is not algebraically closed?

Our Results

Research Question

Can we classify pointed fusion categories when k is not algebraically closed?

Our result extends the known theorem on the previous slide.

Theorem

Let k be a field. Every pointed fusion category C over k is equivalent to either

- **1** k-Vec $_{G(\mathcal{C})}^{\alpha}$, for the constraints $\alpha_{X,Y,Z} = c(X,Y,Z) \mathrm{id}_{(X \otimes Y) \otimes Z}$ for $c \in Z^3(G(\mathcal{C}),k^*)$, or
- **9** $F ext{-Vec}_{k,G(\mathcal{C})}^{\alpha}$, for some finite field extension F of k and for the constraints $\alpha_{X,Y,Z}=c(X,Y,Z)\rhd \mathrm{id}_{(X\otimes Y)\otimes Z}$ for $c\in Z^3(G(\mathcal{C}),F^*_\lozenge)$ and a group action \lozenge of $G(\mathcal{C})$ on F^* .

Case 1 arises when $k = \bar{k}$. Case 2 arises when $k \neq \bar{k}$.

References

- P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik: *Tensor Categories*, Mathematical Surveys and Monographs/American Mathematical Society **205** (2015).
- P. Etingof, D. Nikshych, and V. Ostrik: On fusion categories, Annals of Mathematics 162 (2005), 581–642.
- D. Tambara and S. Yamagami: Tensor categories with fusion rules of self-duality for finite abelian groups, Journal of Algebra 209 (1998), 692–707.
- E. Rowell and Z. Wang: *Mathematics of topological quantum computing*, Bulletin of the American Mathematical Society **55** (2018), 183–238.

Acknowledgements

Many thanks go to

- my mentors Prof. Julia Plavnik (IU) and Dr. Sean Sanford (OSU) for their invaluable feedback, guidance, and encouragement.
- Dr. Pavel Etingof, Dr. Slava Gerovitch, Dr. Tanya Khovanova, the MIT Math Department, and the MIT PRIMES program, for providing us with the opportunity to work on this project.
- my mother for her constant support.
- you for listening.