The Hilbert Series of the Irreducible Quotient for the Polynomial Representation of the Rational Cherednik

 Algebra of Type AAnnie Wang
Mentor: Serina Hu
Acton Boxborough Regional High School

October 15-16, 2022
MIT PRIMES Conference

Vector Space

Definition (Vector Space)

A vector space V is a set of elements equipped with addition and multiplication by scalars from a field.

Example

- $V=\mathbb{k}^{n}$
- Addition: $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]+\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]=\left[\begin{array}{c}a_{1}+b_{1} \\ \vdots \\ a_{n}+b_{n}\end{array}\right]$
- Scalar Multiplication: $\lambda\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]=\left[\begin{array}{c}\lambda a_{1} \\ \vdots \\ \lambda a_{n}\end{array}\right]$ where $\lambda \in \mathbb{k}$
- $V=\mathbb{C}^{n}$

Vector Space Examples

Example

- $V=\mathbb{k}\left[x_{1}, x_{2}\right]$
- Addition:

$$
\sum_{i, j \geq 0} a_{i j} x_{1}^{i} x_{2}^{j}+\sum_{i, j \geq 0} b_{i j} x_{1}^{i} x_{2}^{j}=\sum_{i, j \geq 0}\left(a_{i j}+b_{i j}\right) x_{1}^{i} x_{2}^{j}
$$

- Scalar Multiplication:

$$
\lambda \sum_{i, j \geq 0} a_{i j} x_{1}^{i} x_{2}^{j}=\sum_{i, j \geq 0} \lambda a_{i j} x_{1}^{i} x_{2}^{j}
$$

for $\lambda \in \mathbb{k}$

- $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$

Dimension

Definition (Dimension)

The dimension of a finite-dimensional vector space V is the least number of vectors needed to span V.

Example

- $V_{2}=\mathbb{k}\left[x_{1}, x_{2}\right]=\operatorname{span}\left(x_{1}^{i} x_{2}^{j}\right)$ for all $i, j \geq 0$, so $\operatorname{dim}\left(V_{2}\right)$ is infinite

Algebra

Definition (Algebra)

An algebra is a vector space A equipped with a bilinear product.

Example

We can multiply polynomials with each other in addition to adding them and multiplying by scalars.

- $\mathbb{k}\left[x_{1}, x_{2}\right]$
- $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$

Graded Algebra

Definition (Graded Algebra)

A graded algebra A can be decomposed into the form

$$
A=\oplus_{i \geq 0} A_{i}
$$

for subspaces A_{i} and $A_{j} \cdot A_{k} \subset A_{j+k}$.

Example

- $A=\mathbb{k}\left[x_{1}, x_{2}\right]$, where the i th graded component is homogeneous polynomials of degree i
- A_{0} generator: 1
- A_{1} generators: x_{1}, x_{2}
- A_{2} generators: $x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$
- A_{i} generators: $x_{1}^{i}, x_{1}^{i-1} x_{2}, x_{1}^{i-2} x_{2}^{2}, \ldots, x_{2}^{i}$

Hilbert Series

Definition (Hilbert Series)

To a graded algebra A, we can associate a power series, the Hilbert series, given by

$$
h_{A}(z)=\sum_{i \geq 0} \operatorname{dim}\left(A_{i}\right) z^{i}
$$

Hilbert Series Example

Hilbert series: $h_{A}(z)=\sum_{i \geq 0} \operatorname{dim}\left(A_{i}\right) z^{i}$.

Example

Consider $A=\mathbb{k}\left[x_{1}, x_{2}\right]$.

- A_{0} generator: 1 , so $\operatorname{dim}\left(A_{0}\right)=1$
- A_{1} generators: x_{1}, x_{2}, so $\operatorname{dim}\left(A_{1}\right)=2$
- A_{2} generators: $x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$, so $\operatorname{dim}\left(A_{2}\right)=3$
- A_{i} generators: $x_{1}^{i}, x_{1}^{i-1} x_{2}, x_{1}^{i-2} x_{2}^{2}, \ldots, x_{2}^{i}$, so $\operatorname{dim}\left(A_{i}\right)=i+1$

We have

$$
h_{A}(z)=\sum_{i \geq 0}(i+1) z^{i}=\frac{1}{(1-z)^{2}}
$$

Another Hilbert Series Example

Hilbert series: $h_{A}(z)=\sum_{i \geq 0} \operatorname{dim}\left(A_{i}\right) z^{i}$.
Example
Consider $A=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.

- A_{0} generator: 1 , so $\operatorname{dim}\left(A_{0}\right)=1$
- A_{1} generators: x_{1}, \ldots, x_{n}, so $\operatorname{dim}\left(A_{1}\right)=n$
- A_{2} generators: $x_{j}^{2}, x_{j} x_{k}$, so 2 stars, $n-1$ bars gives $\operatorname{dim}\left(A_{2}\right)=\binom{n+1}{2}$
- A_{i} : we have i stars and $n-1$ bars, so $\operatorname{dim}\left(A_{i}\right)=\binom{n+i-1}{i}$

So we have

$$
h_{A}(z)=\sum_{i \geq 0}\binom{n+i-1}{i} z^{i}=\frac{1}{(1-z)^{n}} .
$$

Representation

Definition (Representation)

A representation of an algebra A is a vector space V equipped with a homomorphism $\rho: A \rightarrow \operatorname{End}(V)$.

The elements of A act on V.

Representation Example

Example

Group algebra $A=\mathbb{k}\left[S_{3}\right]$ where $V=\mathbb{C}^{3}$ and S_{3} acts on elements of V by permutations:

- $123:\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
- 231: $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}z \\ x \\ y\end{array}\right]$
- $132:\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x \\ z \\ y\end{array}\right]$
- 312 : $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}y \\ z \\ x\end{array}\right]$
- $213:\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}y \\ x \\ z\end{array}\right]$
- $321:\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}z \\ y \\ x\end{array}\right]$

So \mathbb{C}^{3} is a representation of this algebra.

Irreducible Representation

A representation V of A is irreducible if there does not exist any proper subspace $W \subset V$ closed under the action of A.

Example

$A=\mathbb{k}\left[S_{3}\right]$ where $V=\mathbb{C}^{3}$ and S_{3} acts by permutations: span $\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)$ is irreducible.

This is the trivial representation, which is also a subrepresentation of \mathbb{C}^{3}.

Polynomial Representation of the RCA

Polynomial representation with structure given by

$$
\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}+\cdots+x_{n}\right) .
$$

Purpose: study the RCA's actions on the polynomial representation, study its irreducible representation, and compute its Hilbert polynomial.

Acknowledgements

A huge thank you to

- My mentor Serina Hu
- My parents
- MIT PRIMES Program
- Professor Etingof, Dr. Gerovitch, and Dr. Khovanova
- The MIT Math Department

References

[CK21] Merrick Cai and Daniil Kalinov. The Hilbert Series of the Irreducible Quotient of the Polynomial Representation of the Rational Cherednik Algebra of Type A_{n-1} in Characteristic p for $p \mid n-1.2021$. arXiv: 1811.04910 [math.RT].
[DS16] Sheela Devadas and Yi Sun. The Polynomial Representation of the Type A_{n-1} Rational Cherednik Algebra in Characteristic p|n. 2016. arXiv: 1505.07891 [math.RT].
[EM10] Pavel Etingof and Xiaoguang Ma. Lecture Notes on Cherednik Algebras. 2010. arXiv: 1001.0432 [math.RT].
[Eti+11] Pavel Etingof et al. Introduction to Representation Theory. American Mathematical Society, 2011.

