The Indecomposable Summands of the Tensor Products of Monomial Modules Over Finite 2-Groups

George Cao
Mentor: Kent Vashaw

Montgomery High School

October 15-16, 2022
MIT PRIMES Conference

A complex sculpture

- What is representation theory?
- What are the goals in representation theory?

The sculpture "Threshold" by James Hopkins ${ }^{1}$

[^0]
Representation theory, broadly

Group representation

Definition

Let G be a finite group. A representation of G is a vector space V (over field k) and a group homomorphism $\rho: G \rightarrow G L(V)$, where $G L(V)$ is the set of bijective linear transformations $V \rightarrow V$.

We write $\rho(g) v \in V$ as $g v$, where $g \in G$ and $v \in V$.

Example

Let $V=\mathbb{R}^{3}$. Then V is a representation of $G=C_{3}=\langle g\rangle$, where

$$
\begin{aligned}
\rho(g): & e_{1} \mapsto e_{2} \\
e_{2} & \mapsto e_{3} \\
e_{3} & \mapsto e_{1}
\end{aligned}
$$

Direct sums of representations

Let G be a group.

Definition

Let V_{1}, V_{2} be representations of G. The direct sum of representations V_{1} and V_{2} is the vector space $V_{1} \oplus V_{2}$ and the action of G given by $g\left(v_{1} \oplus v_{2}\right)=g v_{1} \oplus g v_{2}$.

Definition

Let V be a representation of G. Then V is indecomposable if it cannot be written as the direct sum of two nonzero representations, and V is called irreducible if it has no nontrivial proper subrepresentations.

Maschke's Theorem

Theorem (Maschke)

Let G be a finite group. Then the characteristic of a field k does not divide $|G|$ if and only if any finite dimensional representation of G can be written as a direct sum of irreducible representations.

Modular representation theory: when the characteristic of k divides $|G|$.

Example

Let $G=C_{2}=\langle g\rangle$. Over \mathbb{C}, the irreducible representations are \mathbb{C}_{+} and \mathbb{C}_{-}, given by $\rho(g)=(1)$ and $\rho(g)=(-1)$, respectively. Over $\overline{\mathbb{F}}_{2}$, the only irreducible representation is $\rho(g)=(1)$. The representation given by $\rho(g)=\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$ decomposes into $\mathbb{C}_{+} \oplus \mathbb{C}_{-}$ over \mathbb{C} but is indecomposable over $\overline{\mathbb{F}}_{2}$.

Monomial representations

Let k be an algebraically closed field of characteristic 2. Let $G=\mathbb{Z}_{2^{r}} \times \mathbb{Z}_{2^{s}}$ (a 2-group), with generators x and y.

Choose a partition and remove a sub-partition:

Example

The partition $(4,4,2,1) /(3,1)$:

- Place a basis vector of V in each cell. The action of $x-1$ takes a basis vector to the one in the box adjacent to the right. The action of $y-1$ takes it one cell up.
- Monomial representation is indecomposable if and only if diagram is connected.

Conjecture (Benson and Symonds)

There is a way of "multiplying" representations V and W, denoted $V \otimes W$. The dimension of this is $\operatorname{dim} V \cdot \operatorname{dim} W$.

A consequence of a previously published conjecture is that there is a unique odd-dimensional indecomposable summand of $V^{\otimes n}$. Let this summand be denoted as V_{n}.

Conjecture

Let $P_{V}(x)$ be a function such that $P_{V}(n)$ is the dimension of V_{n}. Then $P_{V}(x)$ is a polynomial, or a quasi-polynomial in some cases.

We examine this conjecture for monomial representations.

Symmetric monomial representations

Simplest monomial representations to check the conjecture:

Proposition

If V is a monomial representation with a monomial diagram that is symmetric by rotation of 180°, then $V_{\text {odd }} \cong V$ and $V_{\text {even }} \cong k$. Particularly,

$$
P_{V}(n)= \begin{cases}\operatorname{dim} V & \text { if } n \text { odd } \\ 1 & \text { if } n \text { even }\end{cases}
$$

$(4,1)$ monomial representation

Let V be the monomial representation corresponding to the partition $(4,1)$.

Proposition

We have the following decomposition into indecomposable summands:

$$
\begin{gathered}
V_{2 k} \otimes V=V_{2 k+1} \oplus \underbrace{F \oplus \cdots \oplus F}_{4 k \text { copies }}, \\
V_{2 k-1} \otimes V=V_{2 k} \oplus W \oplus W \oplus \underbrace{F \oplus \cdots \oplus F}_{4 k-3 \text { copies }},
\end{gathered}
$$

where F is a free module of dimension 8 and W is dimension 4. Particularly, $P_{V}(n)=4 n+1$.

$(4,1)$ monomial representation

Data computed with MAGMA

Diagram	Computed QP
$2^{m}\left\{\begin{array}{l}\square \\ \square\end{array}\right.$	$2^{m} x+1$
$m\left\{\begin{array}{l} \square \\ \square \end{array}\right.$	$2(m-1) x+1$
	$[10 x-5,6 x+1]$
	$[6 x-1,6 x+1]$
\boxminus $\#$ \square	$2 x^{2}+4 x+1$
	[18x-11, $10 x+1]$

Diagram	Computed QP
\square	$[4 x+3,4 x-1]$
	$[8 x-1,8 x+1]$
	[10x-3,10x+1]
	$[12 x-5,12 x-7]$
	$6 x+1$
	[20x-13, 12x +1$]$

Diagram	Computed QP
\square	$[12 x-4,12 x+1]$
\square	
\square	$[4 x+3,8 x+1]$
\square	$[8 x-1,12 x+1]$
\square	$[10 x-3,10 x+1]$
\square	\square
\square	$12 x^{2}-4 x+1$

Acknowledgements

I would like to thank:

- Dr. Kent Vashaw for mentoring me.
- Prof. Etingof for proposing this project and giving valuable advice.
- Prof. Benson for his useful discussions.
- Dr. Gerovitch, Dr. Khovanova, and the MIT PRIMES program for making this wonderful research opportunity possible.

References

J. L. Alperin. Local Representation Theory: Modular representations as an introduction to the local representation theory of finite groups. Cambridge Studies in Advanced Mathematics, 11. Cambridge University Press, Cambridge, 1986. x+178 pp.
D. Benson. Some conjectures and their consequences for tensor products of modules over a finite p-group. J. Algebra, 558 (2020), 24-42, DOI 10.1016/j.jalgebra.2019.10.012.
(1) Benson and P. Symonds. The non-projective part of the tensor powers of a module. J. London Math. Soc., 101 (2019), no. 2, 828-856, DOI 10.1112/jlms. 12288.
P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, E. Yudovina. Introduction to Representation Theory with historical interludes by Slava Gerovitch. Student Mathematical Library, 59. American Mathematical Society, Providence, RI, 2011. viii+228 pp.

[^0]: ${ }^{1}$ Source: https://www. jameshopkinsworks.com/commissions.html

