The Indecomposable Summands of the Tensor Products of Monomial Modules Over Finite 2-Groups

George Cao Mentor: Kent Vashaw

Montgomery High School

October 15-16, 2022 MIT PRIMES Conference

A complex sculpture

- What is representation theory?
- What are the goals in representation theory?

The sculpture "Threshold" by James Hopkins¹

¹Source: https://www.jameshopkinsworks.com/commissions.html

Representation theory, broadly

Definition

Let *G* be a finite group. A **representation** of *G* is a vector space *V* (over field *k*) and a group homomorphism $\rho : G \rightarrow GL(V)$, where GL(V) is the set of bijective linear transformations $V \rightarrow V$.

We write $\rho(g)v \in V$ as gv, where $g \in G$ and $v \in V$.

Example

Let $V = \mathbb{R}^3$. Then V is a representation of $G = C_3 = \langle g \rangle$, where

$$o(g):e_1\mapsto e_2$$

 $e_2\mapsto e_3$
 $e_3\mapsto e_1$

Direct sums of representations

Let G be a group.

Definition

Let V_1 , V_2 be representations of G. The **direct sum** of representations V_1 and V_2 is the vector space $V_1 \oplus V_2$ and the action of G given by $g(v_1 \oplus v_2) = gv_1 \oplus gv_2$.

Definition

Let *V* be a representation of *G*. Then *V* is **indecomposable** if it cannot be written as the direct sum of two nonzero representations, and *V* is called **irreducible** if it has no nontrivial proper subrepresentations.

Theorem (Maschke)

Let G be a finite group. Then the characteristic of a field k does not divide |G| if and only if any finite dimensional representation of G can be written as a direct sum of irreducible representations.

Modular representation theory: when the characteristic of k divides |G|.

Example

Let $G = C_2 = \langle g \rangle$. Over \mathbb{C} , the irreducible representations are \mathbb{C}_+ and \mathbb{C}_- , given by $\rho(g) = (1)$ and $\rho(g) = (-1)$, respectively. Over $\overline{\mathbb{F}}_2$, the only irreducible representation is $\rho(g) = (1)$. The representation given by $\rho(g) = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ decomposes into $\mathbb{C}_+ \oplus \mathbb{C}_$ over \mathbb{C} but is indecomposable over $\overline{\mathbb{F}}_2$.

Monomial representations

Let *k* be an algebraically closed field of characteristic 2. Let $G = \mathbb{Z}_{2^r} \times \mathbb{Z}_{2^s}$ (a 2-group), with generators *x* and *y*.

Choose a partition and remove a sub-partition:

Example The partition (4, 4, 2, 1)/(3, 1):

- Place a basis vector of V in each cell. The action of x 1 takes a basis vector to the one in the box adjacent to the right. The action of y 1 takes it one cell up.
- Monomial representation is indecomposable if and only if diagram is connected.

Summands of Tensor Products

Conjecture (Benson and Symonds)

There is a way of "multiplying" representations *V* and *W*, denoted $V \otimes W$. The dimension of this is dim $V \cdot \dim W$.

A consequence of a previously published conjecture is that there is a unique odd-dimensional indecomposable summand of $V^{\otimes n}$. Let this summand be denoted as V_n .

Conjecture

Let $P_V(x)$ be a function such that $P_V(n)$ is the dimension of V_n . Then $P_V(x)$ is a polynomial, or a quasi-polynomial in some cases.

We examine this conjecture for monomial representations.

Symmetric monomial representations

Simplest monomial representations to check the conjecture:

Proposition

If *V* is a monomial representation with a monomial diagram that is symmetric by rotation of 180°, then $V_{odd} \cong V$ and $V_{even} \cong k$. Particularly,

$${\it P}_V(n) = egin{cases} {
m dim} V & {
m if} \ n \ {
m odd} \ 1 & {
m if} \ n \ {
m even}. \end{cases}$$

(4, 1) monomial representation

Let V be the monomial representation corresponding to the partition (4, 1).

Proposition

We have the following decomposition into indecomposable summands:

$$V_{2k} \otimes V = V_{2k+1} \oplus \underbrace{F \oplus \cdots \oplus F}_{4k \text{ copies}},$$
$$V_{2k-1} \otimes V = V_{2k} \oplus W \oplus W \oplus \underbrace{F \oplus \cdots \oplus F}_{4k-3 \text{ copies}},$$

where *F* is a free module of dimension 8 and *W* is dimension 4. Particularly, $P_V(n) = 4n + 1$.

(4, 1) monomial representation

George Cao

Summands of Tensor Products

Data computed with MAGMA

George Cao

Summands of Tensor Products

I would like to thank:

- Dr. Kent Vashaw for mentoring me.
- Prof. Etingof for proposing this project and giving valuable advice.
- Prof. Benson for his useful discussions.
- Dr. Gerovitch, Dr. Khovanova, and the MIT PRIMES program for making this wonderful research opportunity possible.

References

I. L. Alperin. Local Representation Theory: Modular representations as an introduction to the local representation theory of finite groups. Cambridge Studies in Advanced Mathematics, 11. Cambridge University Press, Cambridge, 1986. x+178 pp.

D. Benson. Some conjectures and their consequences for tensor products of modules over a finite p-group. J. Algebra, 558 (2020), 24-42, DOI 10.1016/j.jalgebra.2019.10.012.

D. Benson and P. Symonds. The non-projective part of the tensor powers of a module. J. London Math. Soc., 101 (2019), no. 2, 828-856, DOI 10.1112/jlms.12288.

P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, E. Yudovina. Introduction to Representation Theory with historical interludes by Slava Gerovitch. Student Mathematical Library, 59. American Mathematical Society, Providence, RI, 2011. viii+228 pp.