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Motivating Question

Theorem
The Fundamental Theorem of Arithmetic states that for all
n ∈ N, there exists a unique prime factorization of n, up to order.

What about algebraic structures exhibiting non-unique factorization?
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Monoids

Definition
A monoid is a pair (M, ·) where M is a set and · is a binary
operation on M, such that

• the operation · is associative, and
• there exists 1 ∈ M such that 1 · x = x · 1 = x for all x ∈ M.

Example
• (N, ×)
• (R≥0, +)
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Atoms in Monoids

For this talk, we will only consider multiplicative monoids
M = (M, ×) with a unique invertible element 1 and commutative
operation ×. From now on, we will also simply denote (M, ×) as M.

Definition
An atom is an element a ∈ M that is not the identity element such
that if there exist elements x , y ∈ M with the property that a = xy ,
then either x = 1 or y = 1.

We let A(M) to be the set of all atoms in M.

Example
The atoms of N are the prime numbers P.

4/32



Atoms in Monoids

For this talk, we will only consider multiplicative monoids
M = (M, ×) with a unique invertible element 1 and commutative
operation ×. From now on, we will also simply denote (M, ×) as M.

Definition
An atom is an element a ∈ M that is not the identity element such
that if there exist elements x , y ∈ M with the property that a = xy ,
then either x = 1 or y = 1.

We let A(M) to be the set of all atoms in M.

Example
The atoms of N are the prime numbers P.

4/32



Atoms in Monoids

For this talk, we will only consider multiplicative monoids
M = (M, ×) with a unique invertible element 1 and commutative
operation ×. From now on, we will also simply denote (M, ×) as M.

Definition
An atom is an element a ∈ M that is not the identity element such
that if there exist elements x , y ∈ M with the property that a = xy ,
then either x = 1 or y = 1.

We let A(M) to be the set of all atoms in M.

Example
The atoms of N are the prime numbers P.

4/32



Atoms in Monoids

For this talk, we will only consider multiplicative monoids
M = (M, ×) with a unique invertible element 1 and commutative
operation ×. From now on, we will also simply denote (M, ×) as M.

Definition
An atom is an element a ∈ M that is not the identity element such
that if there exist elements x , y ∈ M with the property that a = xy ,
then either x = 1 or y = 1.

We let A(M) to be the set of all atoms in M.

Example
The atoms of N are the prime numbers P.

4/32



Factorizations in Monoids

Definition
A factorization of an element x ∈ M is a product x = a1a2 · · · an
where a1, a2, . . . , an ∈ A(M).

For x ∈ M, we denote Z(x) to be the set of factorizations of x .
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Unique Factorization Monoids

Definition
A Unique Factorization Monoid (UFM) is a monoid M where
each element x ∈ M has a unique factorization into atoms.

Example
• N

• Recall that the atoms of N under multiplication are P. By the
Fundamental Theorem of Arithmetic, N is a UFM.

• {1, 3, 5, 7, . . . } = 2N0 + 1
• Similarly, the atoms of 2N0 + 1 are P\{2}. So, 2N0 + 1 is also a

UFM by the Fundamental Theorem of Arithmetic.
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Hilbert’s Monoid

Example
Let Hilbert’s monoid be the set M = {1 + 4k | k ∈ N0} under
multiplication.

Note that for two elements 1 + 4k1, 1 + 4k2 ∈ M, we have

(1 + 4k1)(1 + 4k2) = 1 + 4k1 + 4k2 + 16k1k2 = 1 + 4(k1 + k2 + 4k1k2)

which is in M.

The element 1 serves as the identity element.

This shows that {1 + 4k | k ∈ N0} under multiplication is a monoid.
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Hilbert’s Monoid

Example
Recall that an atom is an element of a monoid that can only be
factored into 1 and itself. It can be shown that an atom in Hilbert’s
monoid is either

• equal to p1 ∈ P where p1 is congruent to 1 modulo 4, or
• equal to p1p2 where p1, p2 ∈ P and p1 and p2 are both

congruent to 3 modulo 4.

Note that the element 693 = 1 + 4 · 173 ∈ M = {1 + 4k | k ∈ N0}
can be factored as

693 = 21 · 33 = 9 · 77,

where 9, 21, 33, 77 ∈ A(M).

Thus, Hilbert’s monoid is not a UFM.
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Arithmetical Congruence Monoids (ACMs)

Definition
An Arithmetical Congruence Monoid (ACM) Ma,b is a monoid
of the form

{a, a + b, a + 2b, a + 3b, . . . } ∪ {1} = (a + bN0) ∪ {1}

for a, b ∈ N such that 0 < a ≤ b and a2 ≡ a (mod b).

Example
• N = M1,1

• Hilbert’s monoid: {1 + 4k | k ∈ N0} = M1,4

• Meyerson’s monoid: {1} ∪ {4 + 6k | k ∈ N0} = M4,6
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Types of ACMs

ACMs can be classified into three mutually exclusive classes.

Definition
An ACM M = Ma,b is

• regular if gcd(a, b) = 1,

• local singular if gcd(a, b) = pα where p is a prime and α ∈ N,

• global singular if gcd(a, b) = d for d =
n∏

i=1
pαi

i for n > 1.

Remark
Note that all regular ACMs must be multiplicatively closed, implying
that b | a2 − a = a(a − 1). But gcd(a, b) = 1 and a ≤ b, and thus
a = 1. So, all regular ACMs will take the form M1,b.
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Monoid invariants measure how far a monoid is from being a UFM.
In our talk, we will define and compute length density, which is one of
three factorization invariants of ACMs we studied.
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Length Sets

Definition
For x ∈ M and a factorization of x = a1a2 · · · an, we call n the
length of the factorization.

Definition
For an element x ∈ M, let its length set be

L(x) = {n | ∃ a1, a2, . . . , an ∈ A(M) with x = a1a2 . . . an}.

Example
In N, the length set of any x ∈ N contains 1 element.
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Example
Consider Meyerson’s monoid M4,6 = {1, 4, 10, 16, . . . }.

It can be shown that an atom a in Meyerson’s monoid is either
• a = 2r1, where r1 is a positive odd number congruent to 2

modulo 3, or
• a = 4r2, where r2 = 1 or r2 is a product of odd primes in N, all

of which are congruent to 1 modulo 3.
The element 10000 = 4 + 6 · 1666 has the two factorizations
10 · 10 · 10 · 10 and 250 · 4 · 10.

Thus, L(10000) = {3, 4}.
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Delta Sets

Definition
Consider x ∈ M for a monoid M. Let L(x) = {n1, n2, . . . nk} where
n1 < n2 < · · · < nk . Then, the delta set of x is defined to be

∆(x) = {ni+1 − ni | 1 ≤ i < k}.

Furthermore, we define the delta set of M to be

∆(M) =
⋃

x∈M
∆(x).

Example
If an element x ∈ M has L(x) = {2, 5, 7, 11}, we have

∆(x) = {2, 3, 4}.
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Length Density

Definition
We let MLI be the set of elements x ∈ M where |L(x)| > 1.

For x ∈ MLI we define the length density of x to be

LD(x) = |L(x)| − 1
max L(x) − min L(x) .

Furthermore, the length density of M is defined as

LD(M) = inf{LD(x) | x ∈ MLI}.

The length density measures how sparse the distribution of the
factorization lengths are.

15/32



Length Density

Definition
We let MLI be the set of elements x ∈ M where |L(x)| > 1.

For x ∈ MLI we define the length density of x to be

LD(x) = |L(x)| − 1
max L(x) − min L(x) .

Furthermore, the length density of M is defined as

LD(M) = inf{LD(x) | x ∈ MLI}.

The length density measures how sparse the distribution of the
factorization lengths are.

15/32



Length Density

Definition
We let MLI be the set of elements x ∈ M where |L(x)| > 1.

For x ∈ MLI we define the length density of x to be

LD(x) = |L(x)| − 1
max L(x) − min L(x) .

Furthermore, the length density of M is defined as

LD(M) = inf{LD(x) | x ∈ MLI}.

The length density measures how sparse the distribution of the
factorization lengths are.

15/32



Length Density

Definition
We let MLI be the set of elements x ∈ M where |L(x)| > 1.

For x ∈ MLI we define the length density of x to be

LD(x) = |L(x)| − 1
max L(x) − min L(x) .

Furthermore, the length density of M is defined as

LD(M) = inf{LD(x) | x ∈ MLI}.

The length density measures how sparse the distribution of the
factorization lengths are.

15/32



Length Density

Example
If an element x ∈ M has L(x) = {2, 5, 7, 11}, we have

LD(x) = |L(x)| − 1
max L(x) − min L(x) = 4 − 1

11 − 2 = 1
3 .

Example
In contrast, if an element x ∈ M has L(x) = {2, 3, 4, 5, 7, 8, 9, 11},
we have

LD(x) = |L(x)| − 1
max L(x) − min L(x) = 8 − 1

11 − 2 = 7
9 .
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Length Density and Delta Sets

The following result reveals an interaction between the length density
and delta sets.
Theorem (Chapman, O’Neill, and Ponomarenko, 2022)
For a monoid M and element x ∈ MLI , we have

1
max ∆(x) ≤ LD(x) ≤ 1

min ∆(x) .
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Length Density in Regular ACMs

Recall that a regular ACM is an ACM of the form
M1,b = {1, 1 + b, 1 + 2b, . . . }.

Theorem (Liu, Ma, and Zhang, 2022)
Let M1,b be a regular ACM. Then

LD(M1,b) =

∅ ϕ(b) ≤ 2
1

ϕ(b)−2 ϕ(b) ≥ 3
.
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Example of Length Density in Regular ACMs

Example
For the monoid M1,7, which is the set {1 + 7k | k ∈ N0}, we have
that the element 156 can only be factored into 36 · 56 and (15)6.

This means L(156) = {2, 6}, implying LD(156) = 1
4 and

LD(M1,7) ≤ 1
4 .

We can also prove by contradiction that 1
4 ≤ 1

max ∆(x) . So,
LD(M1,7) ≥ 1

4 . This forces LD(M1,7) = 1
4 .
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Length Density in Local Singular ACMs

We now discuss LD(Ma,b) where gcd(a, b) = pα for p ∈ P and
α ∈ N. Let β denote the least integer such that pβ ∈ M. Let δ(α, β)
denote the largest integer less than β

α
.

Example
In the monoid M9,15, α = 1, β = 2, and δ(α, β) = 1.

Theorem (Liu, Ma, and Zhang, 2022)
For a local ACM Ma,b, the length density can be characterized as

LD(Ma,b) =


∅ if α = β = 1
1 if α = β > 1

1
δ(α,β) if α < β

.
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Length Density of Meyerson’s Monoid

Example
Recall Meyerson’s monoid M4,6 = {1, 4, 10, 16, . . . }.

Since gcd(4, 6) = 21, α = 1. Also, β = 2 since 4 ∈ M4,6.

It has previously been shown that when α < β, we have
∆(M4,6) = [1, β

α
). Thus, ∆(M4,6) = [1, 2) = {1}.

We also have that 1
max ∆(x) ≤ LD(x). Thus, 1 ≤ LD(M4,6).
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Example
Now, recall that the element 10000 ∈ M4,6 factors as 10 · 10 · 10 · 10
and 250 · 10 · 4.

Thus, L(10000) = {3, 4} which implies LD(10000) = 1.

By the definition of length density, LD(M4,6) ≤ 1. So, our two
bounds force LD(M4,6) = 1.
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