On the factorization invariants of arithmetical congruence monoids

Caroline Liu Annabel Ma Andrew Zhang Mentor: Prof. Scott T. Chapman, SHSU

PRIMES Conference

October 16, 2022

Theorem

The **Fundamental Theorem of Arithmetic** states that for all $n \in \mathbb{N}$, there exists a unique prime factorization of n, up to order.

2/32

Theorem

The **Fundamental Theorem of Arithmetic** states that for all $n \in \mathbb{N}$, there exists a unique prime factorization of n, up to order.

What about algebraic structures exhibiting non-unique factorization?

2/32

A **monoid** is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M, such that

3/32

A **monoid** is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M, such that

• the operation \cdot is associative, and

3/32

A **monoid** is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M, such that

- the operation \cdot is associative, and
- there exists $1 \in M$ such that $1 \cdot x = x \cdot 1 = x$ for all $x \in M$.

3/32

A **monoid** is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M, such that

- the operation \cdot is associative, and
- there exists $1 \in M$ such that $1 \cdot x = x \cdot 1 = x$ for all $x \in M$.

Example

3/32

A **monoid** is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M, such that

- the operation \cdot is associative, and
- there exists $1 \in M$ such that $1 \cdot x = x \cdot 1 = x$ for all $x \in M$.

Example

• (\mathbb{N}, \times)

3/32

A **monoid** is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M, such that

- the operation \cdot is associative, and
- there exists $1 \in M$ such that $1 \cdot x = x \cdot 1 = x$ for all $x \in M$.

Example

● (ℕ, ×)

• (
$$\mathbb{R}_{\geq 0}, +$$
)

4/32

Definition

An **atom** is an element $a \in M$ that is not the identity element such that if there exist elements $x, y \in M$ with the property that a = xy, then either x = 1 or y = 1.

Definition

An **atom** is an element $a \in M$ that is not the identity element such that if there exist elements $x, y \in M$ with the property that a = xy, then either x = 1 or y = 1.

We let $\mathcal{A}(M)$ to be the set of all atoms in M.

Definition

An **atom** is an element $a \in M$ that is not the identity element such that if there exist elements $x, y \in M$ with the property that a = xy, then either x = 1 or y = 1.

We let $\mathcal{A}(M)$ to be the set of all atoms in M.

Example

The atoms of \mathbb{N} are the prime numbers \mathbb{P} .

Шü

A factorization of an element $x \in M$ is a product $x = a_1 a_2 \cdots a_n$ where $a_1, a_2, \ldots, a_n \in \mathcal{A}(M)$.

5/32

A factorization of an element $x \in M$ is a product $x = a_1 a_2 \cdots a_n$ where $a_1, a_2, \ldots, a_n \in \mathcal{A}(M)$.

For $x \in M$, we denote Z(x) to be the set of factorizations of x.

5/32

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

6/32

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

6/32

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

• N

6/32

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

- N
- Recall that the atoms of N under multiplication are P. By the Fundamental Theorem of Arithmetic, N is a UFM.

6/32

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

- N
- Recall that the atoms of N under multiplication are P. By the Fundamental Theorem of Arithmetic, N is a UFM.
- $\{1, 3, 5, 7, \dots\} = 2\mathbb{N}_0 + 1$

6/32

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

- N
- Recall that the atoms of N under multiplication are P. By the Fundamental Theorem of Arithmetic, N is a UFM.

•
$$\{1, 3, 5, 7, \dots\} = 2\mathbb{N}_0 + 1$$

• Similarly, the atoms of $2\mathbb{N}_0 + 1$ are $\mathbb{P}\setminus\{2\}$. So, $2\mathbb{N}_0 + 1$ is also a UFM by the Fundamental Theorem of Arithmetic.

1417 1911:55

Let **Hilbert's monoid** be the set $M = \{1 + 4k \mid k \in \mathbb{N}_0\}$ under multiplication.

7/32

Let **Hilbert's monoid** be the set $M = \{1 + 4k \mid k \in \mathbb{N}_0\}$ under multiplication.

Note that for two elements $1 + 4k_1, 1 + 4k_2 \in M$, we have

$$(1+4k_1)(1+4k_2) = 1+4k_1+4k_2+16k_1k_2 = 1+4(k_1+k_2+4k_1k_2)$$

which is in M.

7/32

Let **Hilbert's monoid** be the set $M = \{1 + 4k \mid k \in \mathbb{N}_0\}$ under multiplication.

Note that for two elements $1 + 4k_1, 1 + 4k_2 \in M$, we have

$$(1+4k_1)(1+4k_2) = 1+4k_1+4k_2+16k_1k_2 = 1+4(k_1+k_2+4k_1k_2)$$

which is in M.

The element 1 serves as the identity element.

7/32

Let **Hilbert's monoid** be the set $M = \{1 + 4k \mid k \in \mathbb{N}_0\}$ under multiplication.

Note that for two elements $1 + 4k_1, 1 + 4k_2 \in M$, we have

$$(1+4k_1)(1+4k_2) = 1+4k_1+4k_2+16k_1k_2 = 1+4(k_1+k_2+4k_1k_2)$$

which is in M.

The element 1 serves as the identity element.

This shows that $\{1 + 4k \mid k \in \mathbb{N}_0\}$ under multiplication is a monoid.

Recall that an atom is an element of a monoid that can only be factored into 1 and itself. It can be shown that an atom in Hilbert's monoid is either

8/32

Recall that an atom is an element of a monoid that can only be factored into 1 and itself. It can be shown that an atom in Hilbert's monoid is either

• equal to $p_1 \in \mathbb{P}$ where p_1 is congruent to 1 modulo 4, or

8/32

Recall that an atom is an element of a monoid that can only be factored into 1 and itself. It can be shown that an atom in Hilbert's monoid is either

- equal to $p_1 \in \mathbb{P}$ where p_1 is congruent to 1 modulo 4, or
- equal to p_1p_2 where $p_1, p_2 \in \mathbb{P}$ and p_1 and p_2 are both congruent to 3 modulo 4.

8/32

Recall that an atom is an element of a monoid that can only be factored into 1 and itself. It can be shown that an atom in Hilbert's monoid is either

- equal to $p_1 \in \mathbb{P}$ where p_1 is congruent to 1 modulo 4, or
- equal to p_1p_2 where $p_1, p_2 \in \mathbb{P}$ and p_1 and p_2 are both congruent to 3 modulo 4.

Note that the element $693 = 1 + 4 \cdot 173 \in M = \{1 + 4k \mid k \in \mathbb{N}_0\}$ can be factored as

$$693 = 21 \cdot 33 = 9 \cdot 77,$$

where $9, 21, 33, 77 \in A(M)$.

8/32

Recall that an atom is an element of a monoid that can only be factored into 1 and itself. It can be shown that an atom in Hilbert's monoid is either

- equal to $p_1 \in \mathbb{P}$ where p_1 is congruent to 1 modulo 4, or
- equal to p_1p_2 where $p_1, p_2 \in \mathbb{P}$ and p_1 and p_2 are both congruent to 3 modulo 4.

Note that the element $693 = 1 + 4 \cdot 173 \in M = \{1 + 4k \mid k \in \mathbb{N}_0\}$ can be factored as

$$693 = 21 \cdot 33 = 9 \cdot 77,$$

where $9, 21, 33, 77 \in \mathcal{A}(M)$.

Thus, Hilbert's monoid is not a UFM.

An Arithmetical Congruence Monoid (ACM) $M_{a,b}$ is a monoid of the form

$$\{a, a+b, a+2b, a+3b, \dots\} \cup \{1\} = (a+b\mathbb{N}_0) \cup \{1\}$$

for $a, b \in \mathbb{N}$ such that $0 < a \leq b$ and $a^2 \equiv a \pmod{b}$.

9/32

An Arithmetical Congruence Monoid (ACM) $M_{a,b}$ is a monoid of the form

$$\{a, a+b, a+2b, a+3b, \dots\} \cup \{1\} = (a+b\mathbb{N}_0) \cup \{1\}$$

for $a, b \in \mathbb{N}$ such that $0 < a \leq b$ and $a^2 \equiv a \pmod{b}$.

Example

An Arithmetical Congruence Monoid (ACM) $M_{a,b}$ is a monoid of the form

$$\{a, a+b, a+2b, a+3b, \dots\} \cup \{1\} = (a+b\mathbb{N}_0) \cup \{1\}$$

for $a, b \in \mathbb{N}$ such that $0 < a \leq b$ and $a^2 \equiv a \pmod{b}$.

Example

•
$$\mathbb{N} = M_{1,1}$$

77:00:5

An Arithmetical Congruence Monoid (ACM) $M_{a,b}$ is a monoid of the form

$$\{a, a+b, a+2b, a+3b, \dots\} \cup \{1\} = (a+b\mathbb{N}_0) \cup \{1\}$$

for $a, b \in \mathbb{N}$ such that $0 < a \leq b$ and $a^2 \equiv a \pmod{b}$.

Example

•
$$\mathbb{N} = M_{1,1}$$

• Hilbert's monoid: $\{1+4k \mid k \in \mathbb{N}_0\} = M_{1,4}$

An Arithmetical Congruence Monoid (ACM) $M_{a,b}$ is a monoid of the form

$$\{a, a+b, a+2b, a+3b, \dots\} \cup \{1\} = (a+b\mathbb{N}_0) \cup \{1\}$$

for $a, b \in \mathbb{N}$ such that $0 < a \leq b$ and $a^2 \equiv a \pmod{b}$.

Example

•
$$\mathbb{N} = M_{1,1}$$

- Hilbert's monoid: $\{1+4k \mid k \in \mathbb{N}_0\} = M_{1,4}$
- Meyerson's monoid: $\{1\} \cup \{4+6k \mid k \in \mathbb{N}_0\} = M_{4,6}$

1111155

ACMs can be classified into three mutually exclusive classes.

10/32
Definition

An ACM $M = M_{a,b}$ is

10/32

Types of ACMs

ACMs can be classified into three mutually exclusive classes.

Definition

An ACM $M = M_{a,b}$ is

• regular if gcd(a, b) = 1,

< 両 > り へ (や

Definition

An ACM $M = M_{a,b}$ is

- regular if gcd(a, b) = 1,
- local singular if $gcd(a, b) = p^{\alpha}$ where p is a prime and $\alpha \in \mathbb{N}$,

Definition

An ACM $M = M_{a,b}$ is

- regular if gcd(a, b) = 1,
- local singular if $gcd(a, b) = p^{\alpha}$ where p is a prime and $\alpha \in \mathbb{N}$,
- global singular if gcd(a, b) = d for $d = \prod_{i=1}^{n} p_i^{\alpha_i}$ for n > 1.

Definition

An ACM $M = M_{a,b}$ is

- regular if gcd(a, b) = 1,
- local singular if $gcd(a, b) = p^{\alpha}$ where p is a prime and $\alpha \in \mathbb{N}$,
- global singular if gcd(a, b) = d for $d = \prod_{i=1}^{n} p_i^{\alpha_i}$ for n > 1.

Remark

Note that all regular ACMs must be multiplicatively closed, implying that $b \mid a^2 - a = a(a - 1)$. But gcd(a, b) = 1 and $a \le b$, and thus a = 1. So, all regular ACMs will take the form $M_{1,b}$.

Monoid invariants measure how far a monoid is from being a UFM. In our talk, we will define and compute length density, which is one of three factorization invariants of ACMs we studied.

For $x \in M$ and a factorization of $x = a_1 a_2 \cdots a_n$, we call *n* the **length** of the factorization.

For $x \in M$ and a factorization of $x = a_1 a_2 \cdots a_n$, we call *n* the **length** of the factorization.

Definition

For an element $x \in M$, let its **length set** be

$$\mathsf{L}(x) = \{n \mid \exists a_1, a_2, \ldots, a_n \in \mathcal{A}(M) \text{ with } x = a_1 a_2 \ldots a_n\}.$$

For $x \in M$ and a factorization of $x = a_1 a_2 \cdots a_n$, we call *n* the **length** of the factorization.

Definition

For an element $x \in M$, let its **length set** be

$$\mathsf{L}(x) = \{n \mid \exists a_1, a_2, \dots, a_n \in \mathcal{A}(M) \text{ with } x = a_1 a_2 \dots a_n\}.$$

Example

In \mathbb{N} , the length set of any $x \in \mathbb{N}$ contains 1 element.

Consider Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, ... \}$.

Consider Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, \dots\}.$

It can be shown that an atom a in Meyerson's monoid is either

• *a* = 2*r*₁, where *r*₁ is a positive odd number congruent to 2 modulo 3, or

Consider Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, \dots\}.$

It can be shown that an atom a in Meyerson's monoid is either

- *a* = 2*r*₁, where *r*₁ is a positive odd number congruent to 2 modulo 3, or
- $a = 4r_2$, where $r_2 = 1$ or r_2 is a product of odd primes in \mathbb{N} , all of which are congruent to 1 modulo 3.

Consider Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, \dots\}.$

It can be shown that an atom a in Meyerson's monoid is either

- *a* = 2*r*₁, where *r*₁ is a positive odd number congruent to 2 modulo 3, or
- $a = 4r_2$, where $r_2 = 1$ or r_2 is a product of odd primes in \mathbb{N} , all of which are congruent to 1 modulo 3.

The element $10000 = 4 + 6 \cdot 1666$ has the two factorizations $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 4 \cdot 10$.

Consider Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, \dots\}.$

It can be shown that an atom a in Meyerson's monoid is either

- *a* = 2*r*₁, where *r*₁ is a positive odd number congruent to 2 modulo 3, or
- $a = 4r_2$, where $r_2 = 1$ or r_2 is a product of odd primes in \mathbb{N} , all of which are congruent to 1 modulo 3.

The element $10000 = 4 + 6 \cdot 1666$ has the two factorizations $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 4 \cdot 10.$

Thus, $L(10000) = \{3, 4\}$.

Consider $x \in M$ for a monoid M. Let $L(x) = \{n_1, n_2, \dots, n_k\}$ where $n_1 < n_2 < \dots < n_k$. Then, the **delta set of** x is defined to be

$$\Delta(x) = \{n_{i+1} - n_i \mid 1 \le i < k\}.$$

Consider $x \in M$ for a monoid M. Let $L(x) = \{n_1, n_2, \dots, n_k\}$ where $n_1 < n_2 < \dots < n_k$. Then, the **delta set of** x is defined to be

$$\Delta(x) = \{n_{i+1} - n_i \mid 1 \le i < k\}.$$

Furthermore, we define the **delta set of** M to be

$$\Delta(M) = \bigcup_{x \in M} \Delta(x).$$

Consider $x \in M$ for a monoid M. Let $L(x) = \{n_1, n_2, \dots, n_k\}$ where $n_1 < n_2 < \dots < n_k$. Then, the **delta set of** x is defined to be

$$\Delta(x) = \{n_{i+1} - n_i \mid 1 \le i < k\}.$$

Furthermore, we define the **delta set of** M to be

$$\Delta(M) = \bigcup_{x \in M} \Delta(x).$$

Example

If an element $x \in M$ has $L(x) = \{2, 5, 7, 11\}$, we have

$$\Delta(x)=\{2,3,4\}.$$

< 日 > う Q (や < 唱 >

We let M^{LI} be the set of elements $x \in M$ where |L(x)| > 1.

We let M^{LI} be the set of elements $x \in M$ where |L(x)| > 1.

For $x \in M^{LI}$ we define the **length density of** x to be

$$\mathsf{LD}(x) = \frac{|\mathsf{L}(x)| - 1}{\max \mathsf{L}(x) - \min \mathsf{L}(x)}$$

We let M^{LI} be the set of elements $x \in M$ where |L(x)| > 1.

For $x \in M^{LI}$ we define the **length density of** x to be

$$\mathsf{LD}(x) = \frac{|\mathsf{L}(x)| - 1}{\max \mathsf{L}(x) - \min \mathsf{L}(x)}$$

Furthermore, the length density of M is defined as

$$\mathsf{LD}(M) = \inf\{\mathsf{LD}(x) \mid x \in M^{LI}\}.$$

We let M^{LI} be the set of elements $x \in M$ where |L(x)| > 1.

For $x \in M^{LI}$ we define the **length density of** x to be

$$\mathsf{LD}(x) = \frac{|\mathsf{L}(x)| - 1}{\max \mathsf{L}(x) - \min \mathsf{L}(x)}.$$

Furthermore, the length density of M is defined as

$$\mathsf{LD}(M) = \inf\{\mathsf{LD}(x) \mid x \in M^{LI}\}.$$

The length density measures how sparse the distribution of the factorization lengths are.

If an element $x \in M$ has $L(x) = \{2, 5, 7, 11\}$, we have

$$LD(x) = \frac{|L(x)| - 1}{\max L(x) - \min L(x)} = \frac{4 - 1}{11 - 2} = \frac{1}{3}.$$

If an element $x \in M$ has $L(x) = \{2, 5, 7, 11\}$, we have

$$LD(x) = \frac{|L(x)| - 1}{\max L(x) - \min L(x)} = \frac{4 - 1}{11 - 2} = \frac{1}{3}.$$

Example

In contrast, if an element $x \in M$ has L(x) = $\{2, 3, 4, 5, 7, 8, 9, 11\}$, we have

$$LD(x) = \frac{|L(x)| - 1}{\max L(x) - \min L(x)} = \frac{8 - 1}{11 - 2} = \frac{7}{9}.$$

חויי פוויוניק

The following result reveals an interaction between the length density and delta sets.

Theorem (Chapman, O'Neill, and Ponomarenko, 2022) For a monoid M and element $x \in M^{Ll}$, we have $\frac{1}{\max \Delta(x)} \leq LD(x) \leq \frac{1}{\min \Delta(x)}.$

Recall that a regular ACM is an ACM of the form $M_{1,b} = \{1, 1 + b, 1 + 2b, \dots\}.$

Recall that a regular ACM is an ACM of the form $M_{1,b} = \{1, 1 + b, 1 + 2b, \dots\}.$

Theorem (Liu, Ma, and Zhang, 2022)

Let $M_{1,b}$ be a regular ACM. Then

$$\mathsf{LD}(M_{1,b}) = egin{cases} arnothing & \phi(b) \leq 2 \ rac{1}{\phi(b)-2} & \phi(b) \geq 3 \end{cases}.$$

For the monoid $M_{1,7}$, which is the set $\{1 + 7k \mid k \in \mathbb{N}_0\}$, we have that the element 15^6 can only be factored into $3^6 \cdot 5^6$ and $(15)^6$.

For the monoid $M_{1,7}$, which is the set $\{1 + 7k \mid k \in \mathbb{N}_0\}$, we have that the element 15^6 can only be factored into $3^6 \cdot 5^6$ and $(15)^6$.

This means
$$L(15^6) = \{2, 6\}$$
, implying $LD(15^6) = \frac{1}{4}$ and $LD(M_{1,7}) \le \frac{1}{4}$.

For the monoid $M_{1,7}$, which is the set $\{1 + 7k \mid k \in \mathbb{N}_0\}$, we have that the element 15^6 can only be factored into $3^6 \cdot 5^6$ and $(15)^6$.

This means L(15⁶) = {2, 6}, implying LD(15⁶) =
$$\frac{1}{4}$$
 and LD($M_{1,7}$) $\leq \frac{1}{4}$.

We can also prove by contradiction that $\frac{1}{4} \leq \frac{1}{\max \Delta(x)}$. So, $LD(M_{1,7}) \geq \frac{1}{4}$. This forces $LD(M_{1,7}) = \frac{1}{4}$.

Length Density in Local Singular ACMs

We now discuss $LD(M_{a,b})$ where $gcd(a, b) = p^{\alpha}$ for $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$. Let β denote the least integer such that $p^{\beta} \in M$. Let $\delta(\alpha, \beta)$ denote the largest integer less than $\frac{\beta}{\alpha}$.

20/32

Length Density in Local Singular ACMs

We now discuss $LD(M_{a,b})$ where $gcd(a, b) = p^{\alpha}$ for $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$. Let β denote the least integer such that $p^{\beta} \in M$. Let $\delta(\alpha, \beta)$ denote the largest integer less than $\frac{\beta}{\alpha}$.

Example

In the monoid $M_{9,15}$, $\alpha = 1$, $\beta = 2$, and $\delta(\alpha, \beta) = 1$.

20/32

Length Density in Local Singular ACMs

We now discuss $LD(M_{a,b})$ where $gcd(a, b) = p^{\alpha}$ for $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$. Let β denote the least integer such that $p^{\beta} \in M$. Let $\delta(\alpha, \beta)$ denote the largest integer less than $\frac{\beta}{\alpha}$.

Example

In the monoid
$$M_{9,15}$$
, $\alpha = 1$, $\beta = 2$, and $\delta(\alpha, \beta) = 1$.

Theorem (Liu, Ma, and Zhang, 2022)

For a local ACM $M_{a,b}$, the length density can be characterized as

$$\mathsf{LD}(M_{a,b}) = \begin{cases} \varnothing & \text{if } \alpha = \beta = 1\\ 1 & \text{if } \alpha = \beta > 1 \\ \frac{1}{\delta(\alpha,\beta)} & \text{if } \alpha < \beta \end{cases}$$

Recall Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, \dots\}$.

Recall Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, \dots\}$.

Since $gcd(4, 6) = 2^1$, $\alpha = 1$. Also, $\beta = 2$ since $4 \in M_{4,6}$.

Recall Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, \dots\}.$

Since $gcd(4,6) = 2^1$, $\alpha = 1$. Also, $\beta = 2$ since $4 \in M_{4,6}$.

It has previously been shown that when $\alpha < \beta$, we have $\Delta(M_{4,6}) = [1, \frac{\beta}{\alpha})$. Thus, $\Delta(M_{4,6}) = [1, 2) = \{1\}$.

Recall Meyerson's monoid $M_{4,6} = \{1, 4, 10, 16, \dots\}.$

Since $gcd(4,6) = 2^1$, $\alpha = 1$. Also, $\beta = 2$ since $4 \in M_{4,6}$.

It has previously been shown that when $\alpha < \beta$, we have $\Delta(M_{4,6}) = [1, \frac{\beta}{\alpha})$. Thus, $\Delta(M_{4,6}) = [1, 2) = \{1\}$.

We also have that $\frac{1}{\max\Delta(x)} \leq \mathsf{LD}(x)$. Thus, $1 \leq \mathsf{LD}(M_{4,6})$.

Example

Now, recall that the element $10000 \in M_{4,6}$ factors as $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 10 \cdot 4$.

22/32

Example

Now, recall that the element $10000 \in M_{4,6}$ factors as $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 10 \cdot 4$.

Thus, $L(10000) = \{3, 4\}$ which implies LD(10000) = 1.

22/32

Example

Now, recall that the element $10000 \in M_{4,6}$ factors as $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 10 \cdot 4$.

Thus, $L(10000) = \{3, 4\}$ which implies LD(10000) = 1.

By the definition of length density, $LD(M_{4,6}) \le 1$. So, our two bounds force $LD(M_{4,6}) = 1$.

D. Anderson, D. F. Anderson, and M. Zafrullah. Factorization in integral domains. *J. Pure Appl. Algebra*, 69(1):1–19, 1990.

 D. F. Anderson, S. T. Chapman, N. Kaplan, and D. Torkornoo. An algorithm to compute ω-primality in a numerical monoid. In *Semigroup Forum*, volume 82, pages 96–108. Springer, 2011.

 P. Baginski and S. T. Chapman. Arithmetic congruence monoids: a survey.
 In Combinatorial and Additive Number Theory, pages 15–38. Springer, 2014.

> 1417 2011/155

- P. Baginski, S. T. Chapman, and G. J. Schaeffer.
 On the delta set of a singular arithmetical congruence monoid.
 J. Theor. Nr. Bordx., 20(1):45–59, 2008.
- M. Banister, J. Chaika, S. T. Chapman, and W. Meyerson.
 On the arithmetic of arithmetical congruence monoids.
 In *Colloq. Math.*, volume 1, pages 105–118, 2007.
- M. Banister, J. Chaika, S. T. Chapman, and W. Meyerson. A theorem on accepted elasticity in certain local arithmetical congruence monoids. *Abh. Math. Semin. Univ. Hambg*, 79(1):79–86, 2009.

1417 173141:55

- - T. Barron, C. O'Neill, and R. Pelayo.

On dynamic algorithms for factorization invariants in numerical monoids.

Math. Comput., 86(307):2429-2447, 2017.

 C. Brower, S. T. Chapman, T. Kulhanek, J. McDonough, C. O'Neill, V. Pavlyuk, and V. Ponomarenko.
 Length density and numerical semigroups.
 Preprint. Available at arXiv:2110.10618, 2021.

S. T. Chapman.

A tale of two monoids: A friendly introduction to nonunique factorizations.

Math. Mag., 87(3):163-173, 2014.

- S. T. Chapman, P. A. García-Sánchez, Z. Tripp, and C. Viola. Measuring primality in numerical semigroups with embedding dimension three.
 - J. Algebra Appl., 15(01):1650007, 2016.
- S. T. Chapman, C. O'Neill, and V. Ponomarenko.
 On length densities.
 In *Forum Math.*, volume 34, pages 293–306. De Gruyter, 2022.
- S. T. Chapman and D. Steinberg.
 On the elasticity of generalized arithmetical congruence monoids. *Results Math.*, 58(3):221–231, 2010.

26/32

S. T. Chapman and Z. Tripp.
 ω-primality in arithmetic learner monoids.
 In Semigroup Forum, volume 99, pages 47–56. Springer, 2019.

H. Davenport.

The higher arithmetic: An introduction to the theory of numbers.

Cambridge University Press, 1999.

 A. Fujiwara, J. Gibson, M. O. Jenssen, D. Montealegre, V. Ponomarenko, and A. Tenzer.
 Arithmetic of congruence monoids. *Commun. Algebra*, 44(8):3407–3421, 2016.

A. Geroldinger.

Chains of factorizations in weakly krull domains. In *Colloq. Math.*, volume 72, pages 53–81, 1997.

- A. Geroldinger, A. J. Grynkiewicz, and W. A. Schmid. The catenary degree of krull monoids i. J. Theor. Nr. Bordx., 23(1):137–169, 2011.
- A. Geroldinger and F. Halter-Koch.
 Non-unique factorizations: Algebraic, combinatorial and analytic theory.
 Chapman and Hall/CRC, 2006.

A. Geroldinger and W. Hassler.

Local tameness of v-noetherian monoids. J. Pure Appl. Algebra, 212(6):1509–1524, 2008.

A. Geroldinger and Q. Zhong.
 The catenary degree of krull monoids ii.
 J. Aust. Math. Soc., 98(3):324–354, 2015.

F. Halter-Koch.

Arithmetical semigroups defined by congruences.

In Semigroup Forum, volume 42, pages 59-62. Springer, 1991.

J. Hartzer and C. O'Neill.

On the periodicity of irreducible elements in arithmetical congruence monoids.

Preprint. Available at arXiv:1606.00376, 2016.

W. Narkiewicz.

On algebraic number fields with non-unique factorization, ii. In *Colloq. Math.*, volume 15, pages 49–58. Institute of Mathematics Polish Academy of Sciences, 1966.

M. Omidali.

The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences. 2012.

C. O'Neill.

On factorization invariants and hilbert functions. J. Pure Appl. Algebra, 221(12):3069–3088, 2017.

- C. O'Neill and R. Pelayo. How do you measure primality? *Amer. Math. Monthly*, 122(2):121–137, 2015.
- C. O'Neill and R. Pelayo.
 Realisable sets of catenary degrees of numerical monoids.
 Bull. Aust. Math. Soc., 97(2):240–245, 2018.

• Professor Scott T. Chapman and Harold Polo for mentoring us throughout this time period,

32/32

- Professor Scott T. Chapman and Harold Polo for mentoring us throughout this time period,
- the PRIMES program for giving us this opportunity to participate in pure math research and learn topics we would not otherwise touch upon in high school,

32/32

- Professor Scott T. Chapman and Harold Polo for mentoring us throughout this time period,
- the PRIMES program for giving us this opportunity to participate in pure math research and learn topics we would not otherwise touch upon in high school,
- our parents for supporting us throughout this process,

- Professor Scott T. Chapman and Harold Polo for mentoring us throughout this time period,
- the PRIMES program for giving us this opportunity to participate in pure math research and learn topics we would not otherwise touch upon in high school,
- our parents for supporting us throughout this process,
- and you, our listeners.

