On the factorization invariants of arithmetical congruence monoids

Caroline Liu
Annabel Ma
Andrew Zhang
Mentor: Prof. Scott T. Chapman, SHSU

PRIMES Conference
October 16, 2022

Motivating Question

Theorem

The Fundamental Theorem of Arithmetic states that for all $n \in \mathbb{N}$ ，there exists a unique prime factorization of n ，up to order．

Motivating Question

Theorem
The Fundamental Theorem of Arithmetic states that for all $n \in \mathbb{N}$ ，there exists a unique prime factorization of n ，up to order．

What about algebraic structures exhibiting non－unique factorization？

Monoids

Definition

A monoid is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M ，such that

Monoids

Definition

A monoid is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M ，such that
－the operation－is associative，and

Monoids

Definition

A monoid is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M ，such that
－the operation－is associative，and
－there exists $1 \in M$ such that $1 \cdot x=x \cdot 1=x$ for all $x \in M$ ．

Monoids

Definition

A monoid is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M ，such that
－the operation－is associative，and
－there exists $1 \in M$ such that $1 \cdot x=x \cdot 1=x$ for all $x \in M$ ．

Example

$3 / 32$
回・のロく

Monoids

Definition

A monoid is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M ，such that
－the operation－is associative，and
－there exists $1 \in M$ such that $1 \cdot x=x \cdot 1=x$ for all $x \in M$ ．

Example

－(\mathbb{N}, \times)
$3 / 32$
可 つのく

Monoids

Definition

A monoid is a pair (M, \cdot) where M is a set and \cdot is a binary operation on M ，such that
－the operation－is associative，and
－there exists $1 \in M$ such that $1 \cdot x=x \cdot 1=x$ for all $x \in M$ ．

Example

－(\mathbb{N}, \times)
－$\left(\mathbb{R}_{\geq 0},+\right)$
$3 / 32$
可 つのく

Atoms in Monoids

For this talk，we will only consider multiplicative monoids $M=(M, \times)$ with a unique invertible element 1 and commutative operation \times ．From now on，we will also simply denote (M, \times) as M ．

Atoms in Monoids

For this talk，we will only consider multiplicative monoids $M=(M, \times)$ with a unique invertible element 1 and commutative operation \times ．From now on，we will also simply denote (M, \times) as M ．

Definition

An atom is an element $a \in M$ that is not the identity element such that if there exist elements $x, y \in M$ with the property that $a=x y$ ， then either $x=1$ or $y=1$ ．

Atoms in Monoids

For this talk，we will only consider multiplicative monoids $M=(M, \times)$ with a unique invertible element 1 and commutative operation \times ．From now on，we will also simply denote (M, \times) as M ．

Definition

An atom is an element $a \in M$ that is not the identity element such that if there exist elements $x, y \in M$ with the property that $a=x y$ ， then either $x=1$ or $y=1$ ．

We let $\mathcal{A}(M)$ to be the set of all atoms in M ．

Atoms in Monoids

For this talk，we will only consider multiplicative monoids $M=(M, \times)$ with a unique invertible element 1 and commutative operation \times ．From now on，we will also simply denote (M, \times) as M ．

Definition

An atom is an element $a \in M$ that is not the identity element such that if there exist elements $x, y \in M$ with the property that $a=x y$ ， then either $x=1$ or $y=1$ ．

We let $\mathcal{A}(M)$ to be the set of all atoms in M ．

Example

The atoms of \mathbb{N} are the prime numbers \mathbb{P} ．

$$
4 / 32
$$

Factorizations in Monoids

Definition

A factorization of an element $x \in M$ is a product $x=a_{1} a_{2} \cdots a_{n}$ where $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}(M)$ ．

Factorizations in Monoids

Definition

A factorization of an element $x \in M$ is a product $x=a_{1} a_{2} \cdots a_{n}$ where $a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}(M)$ ．

For $x \in M$ ，we denote $Z(x)$ to be the set of factorizations of x ．

Unique Factorization Monoids

Definition

A Unique Factorization Monoid（UFM）is a monoid M where each element $x \in M$ has a unique factorization into atoms．

Unique Factorization Monoids

Definition

A Unique Factorization Monoid（UFM）is a monoid M where each element $x \in M$ has a unique factorization into atoms．

Example

Unique Factorization Monoids

Definition

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

- \mathbb{N}

Unique Factorization Monoids

Definition

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

- \mathbb{N}
- Recall that the atoms of \mathbb{N} under multiplication are \mathbb{P}. By the Fundamental Theorem of Arithmetic, \mathbb{N} is a UFM.

Unique Factorization Monoids

Definition

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

- \mathbb{N}
- Recall that the atoms of \mathbb{N} under multiplication are \mathbb{P}. By the Fundamental Theorem of Arithmetic, \mathbb{N} is a UFM.
- $\{1,3,5,7, \ldots\}=2 \mathbb{N}_{0}+1$

Unique Factorization Monoids

Definition

A Unique Factorization Monoid (UFM) is a monoid M where each element $x \in M$ has a unique factorization into atoms.

Example

- \mathbb{N}
- Recall that the atoms of \mathbb{N} under multiplication are \mathbb{P}. By the Fundamental Theorem of Arithmetic, \mathbb{N} is a UFM.
- $\{1,3,5,7, \ldots\}=2 \mathbb{N}_{0}+1$
- Similarly, the atoms of $2 \mathbb{N}_{0}+1$ are $\mathbb{P} \backslash\{2\}$. So, $2 \mathbb{N}_{0}+1$ is also a UFM by the Fundamental Theorem of Arithmetic.

Hilbert＇s Monoid

Example

Let Hilbert＇s monoid be the set $M=\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$ under multiplication．

Hilbert＇s Monoid

Example

Let Hilbert＇s monoid be the set $M=\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$ under multiplication．

Note that for two elements $1+4 k_{1}, 1+4 k_{2} \in M$ ，we have
$\left(1+4 k_{1}\right)\left(1+4 k_{2}\right)=1+4 k_{1}+4 k_{2}+16 k_{1} k_{2}=1+4\left(k_{1}+k_{2}+4 k_{1} k_{2}\right)$ which is in M ．

Hilbert's Monoid

Example

Let Hilbert's monoid be the set $M=\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$ under multiplication.

Note that for two elements $1+4 k_{1}, 1+4 k_{2} \in M$, we have
$\left(1+4 k_{1}\right)\left(1+4 k_{2}\right)=1+4 k_{1}+4 k_{2}+16 k_{1} k_{2}=1+4\left(k_{1}+k_{2}+4 k_{1} k_{2}\right)$ which is in M.

The element 1 serves as the identity element.

Hilbert＇s Monoid

Example

Let Hilbert＇s monoid be the set $M=\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$ under multiplication．

Note that for two elements $1+4 k_{1}, 1+4 k_{2} \in M$ ，we have
$\left(1+4 k_{1}\right)\left(1+4 k_{2}\right)=1+4 k_{1}+4 k_{2}+16 k_{1} k_{2}=1+4\left(k_{1}+k_{2}+4 k_{1} k_{2}\right)$ which is in M ．

The element 1 serves as the identity element．
This shows that $\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$ under multiplication is a monoid．

Hilbert＇s Monoid

Example

Recall that an atom is an element of a monoid that can only be factored into 1 and itself．It can be shown that an atom in Hilbert＇s monoid is either

Hilbert＇s Monoid

Example

Recall that an atom is an element of a monoid that can only be factored into 1 and itself．It can be shown that an atom in Hilbert＇s monoid is either
－equal to $p_{1} \in \mathbb{P}$ where p_{1} is congruent to 1 modulo 4 ，or

Hilbert＇s Monoid

Example

Recall that an atom is an element of a monoid that can only be factored into 1 and itself．It can be shown that an atom in Hilbert＇s monoid is either
－equal to $p_{1} \in \mathbb{P}$ where p_{1} is congruent to 1 modulo 4 ，or
－equal to $p_{1} p_{2}$ where $p_{1}, p_{2} \in \mathbb{P}$ and p_{1} and p_{2} are both congruent to 3 modulo 4.

Hilbert＇s Monoid

Example

Recall that an atom is an element of a monoid that can only be factored into 1 and itself．It can be shown that an atom in Hilbert＇s monoid is either
－equal to $p_{1} \in \mathbb{P}$ where p_{1} is congruent to 1 modulo 4 ，or
－equal to $p_{1} p_{2}$ where $p_{1}, p_{2} \in \mathbb{P}$ and p_{1} and p_{2} are both congruent to 3 modulo 4.

Note that the element $693=1+4 \cdot 173 \in M=\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$ can be factored as

$$
693=21 \cdot 33=9 \cdot 77
$$

where $9,21,33,77 \in \mathcal{A}(M)$ ．

$$
8 / 32
$$

Hilbert＇s Monoid

Example

Recall that an atom is an element of a monoid that can only be factored into 1 and itself．It can be shown that an atom in Hilbert＇s monoid is either
－equal to $p_{1} \in \mathbb{P}$ where p_{1} is congruent to 1 modulo 4 ，or
－equal to $p_{1} p_{2}$ where $p_{1}, p_{2} \in \mathbb{P}$ and p_{1} and p_{2} are both congruent to 3 modulo 4.

Note that the element $693=1+4 \cdot 173 \in M=\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$ can be factored as

$$
693=21 \cdot 33=9 \cdot 77
$$

where $9,21,33,77 \in \mathcal{A}(M)$ ．
Thus，Hilbert＇s monoid is not a UFM．

$$
8 / 32
$$

Arithmetical Congruence Monoids (ACMs)

Definition

An Arithmetical Congruence Monoid (ACM) $M_{a, b}$ is a monoid of the form

$$
\{a, a+b, a+2 b, a+3 b, \ldots\} \cup\{1\}=\left(a+b \mathbb{N}_{0}\right) \cup\{1\}
$$

for $a, b \in \mathbb{N}$ such that $0<a \leq b$ and $a^{2} \equiv a(\bmod b)$.

Arithmetical Congruence Monoids（ACMs）

Definition

An Arithmetical Congruence Monoid（ACM）$M_{a, b}$ is a monoid of the form

$$
\{a, a+b, a+2 b, a+3 b, \ldots\} \cup\{1\}=\left(a+b \mathbb{N}_{0}\right) \cup\{1\}
$$

for $a, b \in \mathbb{N}$ such that $0<a \leq b$ and $a^{2} \equiv a(\bmod b)$ ．

Example

9／32
回 つのく

Arithmetical Congruence Monoids（ACMs）

Definition

An Arithmetical Congruence Monoid（ACM）$M_{a, b}$ is a monoid of the form

$$
\{a, a+b, a+2 b, a+3 b, \ldots\} \cup\{1\}=\left(a+b \mathbb{N}_{0}\right) \cup\{1\}
$$

for $a, b \in \mathbb{N}$ such that $0<a \leq b$ and $a^{2} \equiv a(\bmod b)$ ．

Example

－ $\mathbb{N}=M_{1,1}$

Arithmetical Congruence Monoids（ACMs）

Definition

An Arithmetical Congruence Monoid（ACM）$M_{a, b}$ is a monoid of the form

$$
\{a, a+b, a+2 b, a+3 b, \ldots\} \cup\{1\}=\left(a+b \mathbb{N}_{0}\right) \cup\{1\}
$$

for $a, b \in \mathbb{N}$ such that $0<a \leq b$ and $a^{2} \equiv a(\bmod b)$ ．

Example

－ $\mathbb{N}=M_{1,1}$
－Hilbert＇s monoid：$\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}=M_{1,4}$

9／32
回 つのく

Arithmetical Congruence Monoids（ACMs）

Definition

An Arithmetical Congruence Monoid（ACM）$M_{a, b}$ is a monoid of the form

$$
\{a, a+b, a+2 b, a+3 b, \ldots\} \cup\{1\}=\left(a+b \mathbb{N}_{0}\right) \cup\{1\}
$$

for $a, b \in \mathbb{N}$ such that $0<a \leq b$ and $a^{2} \equiv a(\bmod b)$ ．

Example

－ $\mathbb{N}=M_{1,1}$
－Hilbert＇s monoid：$\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}=M_{1,4}$
－Meyerson＇s monoid：$\{1\} \cup\left\{4+6 k \mid k \in \mathbb{N}_{0}\right\}=M_{4,6}$

Types of ACMs

ACMs can be classified into three mutually exclusive classes.

Types of ACMs

ACMs can be classified into three mutually exclusive classes．
Definition
An ACM $M=M_{a, b}$ is

Types of ACMs

ACMs can be classified into three mutually exclusive classes．

Definition

An ACM $M=M_{a, b}$ is
－regular if $\operatorname{gcd}(a, b)=1$ ，

Types of ACMs

ACMs can be classified into three mutually exclusive classes．

Definition

An ACM $M=M_{a, b}$ is
－regular if $\operatorname{gcd}(a, b)=1$ ，
－local singular if $\operatorname{gcd}(a, b)=p^{\alpha}$ where p is a prime and $\alpha \in \mathbb{N}$ ，

Types of ACMs

ACMs can be classified into three mutually exclusive classes．

Definition

An ACM $M=M_{a, b}$ is
－regular if $\operatorname{gcd}(a, b)=1$ ，
－local singular if $\operatorname{gcd}(a, b)=p^{\alpha}$ where p is a prime and $\alpha \in \mathbb{N}$ ，
－global singular if $\operatorname{gcd}(a, b)=d$ for $d=\prod_{i=1}^{n} p_{i}^{\alpha_{i}}$ for $n>1$ ．

Types of ACMs

ACMs can be classified into three mutually exclusive classes．

Definition

An ACM $M=M_{a, b}$ is
－regular if $\operatorname{gcd}(a, b)=1$ ，
－local singular if $\operatorname{gcd}(a, b)=p^{\alpha}$ where p is a prime and $\alpha \in \mathbb{N}$ ，
－global singular if $\operatorname{gcd}(a, b)=d$ for $d=\prod_{i=1}^{n} p_{i}^{\alpha_{i}}$ for $n>1$ ．

Remark

Note that all regular ACMs must be multiplicatively closed，implying that $b \mid a^{2}-a=a(a-1)$ ．But $\operatorname{gcd}(a, b)=1$ and $a \leq b$ ，and thus $a=1$ ．So，all regular ACMs will take the form $M_{1, b}$ ．

Monoid invariants measure how far a monoid is from being a UFM． In our talk，we will define and compute length density，which is one of three factorization invariants of ACMs we studied．

Length Sets

Definition

For $x \in M$ and a factorization of $x=a_{1} a_{2} \cdots a_{n}$, we call n the length of the factorization.

Length Sets

Definition

For $x \in M$ and a factorization of $x=a_{1} a_{2} \cdots a_{n}$ ，we call n the length of the factorization．

Definition

For an element $x \in M$ ，let its length set be

$$
\mathrm{L}(x)=\left\{n \mid \exists a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}(M) \text { with } x=a_{1} a_{2} \ldots a_{n}\right\}
$$

Length Sets

Definition

For $x \in M$ and a factorization of $x=a_{1} a_{2} \cdots a_{n}$ ，we call n the length of the factorization．

Definition

For an element $x \in M$ ，let its length set be

$$
\mathrm{L}(x)=\left\{n \mid \exists a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}(M) \text { with } x=a_{1} a_{2} \ldots a_{n}\right\}
$$

Example

In \mathbb{N} ，the length set of any $x \in \mathbb{N}$ contains 1 element．

$$
12 / 32
$$

Example

Consider Meyerson's monoid $M_{4,6}=\{1,4,10,16, \ldots\}$.

Example

Consider Meyerson＇s monoid $M_{4,6}=\{1,4,10,16, \ldots\}$ ．
It can be shown that an atom a in Meyerson＇s monoid is either
－$a=2 r_{1}$ ，where r_{1} is a positive odd number congruent to 2 modulo 3，or

Example

Consider Meyerson＇s monoid $M_{4,6}=\{1,4,10,16, \ldots\}$ ．
It can be shown that an atom a in Meyerson＇s monoid is either
－$a=2 r_{1}$ ，where r_{1} is a positive odd number congruent to 2 modulo 3，or
－$a=4 r_{2}$ ，where $r_{2}=1$ or r_{2} is a product of odd primes in \mathbb{N} ，all of which are congruent to 1 modulo 3 ．

Example

Consider Meyerson＇s monoid $M_{4,6}=\{1,4,10,16, \ldots\}$ ．
It can be shown that an atom a in Meyerson＇s monoid is either
－$a=2 r_{1}$ ，where r_{1} is a positive odd number congruent to 2 modulo 3，or
－$a=4 r_{2}$ ，where $r_{2}=1$ or r_{2} is a product of odd primes in \mathbb{N} ，all of which are congruent to 1 modulo 3 ．
The element $10000=4+6 \cdot 1666$ has the two factorizations $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 4 \cdot 10$ ．

Example

Consider Meyerson＇s monoid $M_{4,6}=\{1,4,10,16, \ldots\}$ ．
It can be shown that an atom a in Meyerson＇s monoid is either
－$a=2 r_{1}$ ，where r_{1} is a positive odd number congruent to 2 modulo 3 ，or
－$a=4 r_{2}$ ，where $r_{2}=1$ or r_{2} is a product of odd primes in \mathbb{N} ，all of which are congruent to 1 modulo 3 ．
The element $10000=4+6 \cdot 1666$ has the two factorizations $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 4 \cdot 10$ ．

Thus，$L(10000)=\{3,4\}$ ．

Delta Sets

Definition

Consider $x \in M$ for a monoid M. Let $\mathrm{L}(x)=\left\{n_{1}, n_{2}, \ldots n_{k}\right\}$ where $n_{1}<n_{2}<\cdots<n_{k}$. Then, the delta set of x is defined to be

$$
\Delta(x)=\left\{n_{i+1}-n_{i} \mid 1 \leq i<k\right\} .
$$

Delta Sets

Definition

Consider $x \in M$ for a monoid M ．Let $L(x)=\left\{n_{1}, n_{2}, \ldots n_{k}\right\}$ where $n_{1}<n_{2}<\cdots<n_{k}$ ．Then，the delta set of x is defined to be

$$
\Delta(x)=\left\{n_{i+1}-n_{i} \mid 1 \leq i<k\right\} .
$$

Furthermore，we define the delta set of M to be

$$
\Delta(M)=\bigcup_{x \in M} \Delta(x)
$$

Delta Sets

Definition

Consider $x \in M$ for a monoid M ．Let $\mathrm{L}(x)=\left\{n_{1}, n_{2}, \ldots n_{k}\right\}$ where $n_{1}<n_{2}<\cdots<n_{k}$ ．Then，the delta set of x is defined to be

$$
\Delta(x)=\left\{n_{i+1}-n_{i} \mid 1 \leq i<k\right\} .
$$

Furthermore，we define the delta set of M to be

$$
\Delta(M)=\bigcup_{x \in M} \Delta(x)
$$

Example

If an element $x \in M$ has $L(x)=\{2,5,7,11\}$ ，we have

$$
\Delta(x)=\{2,3,4\} .
$$

14/32

Length Density

Definition

We let $M^{L I}$ be the set of elements $x \in M$ where $|\mathrm{L}(x)|>1$ ．

Length Density

Definition

We let $M^{L I}$ be the set of elements $x \in M$ where $|\mathrm{L}(x)|>1$ ．
For $x \in M^{L I}$ we define the length density of x to be

$$
\mathrm{LD}(x)=\frac{|\mathrm{L}(x)|-1}{\max \mathrm{~L}(x)-\min \mathrm{L}(x)}
$$

Length Density

Definition

We let $M^{L I}$ be the set of elements $x \in M$ where $|\mathrm{L}(x)|>1$ ．
For $x \in M^{L I}$ we define the length density of x to be

$$
\mathrm{LD}(x)=\frac{|\mathrm{L}(x)|-1}{\max \mathrm{~L}(x)-\min \mathrm{L}(x)}
$$

Furthermore，the length density of M is defined as

$$
\operatorname{LD}(M)=\inf \left\{\operatorname{LD}(x) \mid x \in M^{L \prime}\right\}
$$

Length Density

Definition

We let $M^{L I}$ be the set of elements $x \in M$ where $|\mathrm{L}(x)|>1$ ．
For $x \in M^{L I}$ we define the length density of x to be

$$
\mathrm{LD}(x)=\frac{|\mathrm{L}(x)|-1}{\max \mathrm{~L}(x)-\min \mathrm{L}(x)}
$$

Furthermore，the length density of M is defined as

$$
\operatorname{LD}(M)=\inf \left\{\operatorname{LD}(x) \mid x \in M^{L \prime}\right\}
$$

The length density measures how sparse the distribution of the factorization lengths are．

Length Density

Example

If an element $x \in M$ has $\mathrm{L}(x)=\{2,5,7,11\}$ ，we have

$$
\mathrm{LD}(x)=\frac{|\mathrm{L}(x)|-1}{\max \mathrm{~L}(x)-\min \mathrm{L}(x)}=\frac{4-1}{11-2}=\frac{1}{3}
$$

Length Density

Example

If an element $x \in M$ has $\mathrm{L}(x)=\{2,5,7,11\}$ ，we have

$$
\mathrm{LD}(x)=\frac{|\mathrm{L}(x)|-1}{\max \mathrm{~L}(x)-\min \mathrm{L}(x)}=\frac{4-1}{11-2}=\frac{1}{3}
$$

Example

In contrast，if an element $x \in M$ has $L(x)=\{2,3,4,5,7,8,9,11\}$ ， we have

$$
\mathrm{LD}(x)=\frac{|\mathrm{L}(x)|-1}{\operatorname{maxL}(x)-\min \mathrm{L}(x)}=\frac{8-1}{11-2}=\frac{7}{9}
$$

Length Density and Delta Sets

The following result reveals an interaction between the length density and delta sets.

Theorem (Chapman, O'Neill, and Ponomarenko, 2022)

For a monoid M and element $x \in M^{L I}$, we have

$$
\frac{1}{\max \Delta(x)} \leq \mathrm{LD}(x) \leq \frac{1}{\min \Delta(x)}
$$

Length Density in Regular ACMs

Recall that a regular ACM is an ACM of the form $M_{1, b}=\{1,1+b, 1+2 b, \ldots\}$.

Length Density in Regular ACMs

Recall that a regular ACM is an ACM of the form $M_{1, b}=\{1,1+b, 1+2 b, \ldots\}$.

Theorem (Liu, Ma, and Zhang, 2022)

Let $M_{1, b}$ be a regular ACM. Then

$$
\operatorname{LD}\left(M_{1, b}\right)=\left\{\begin{array}{ll}
\varnothing & \phi(b) \leq 2 \\
\frac{1}{\phi(b)-2} & \phi(b) \geq 3
\end{array} .\right.
$$

Example of Length Density in Regular ACMs

Example

For the monoid $M_{1,7}$ ，which is the set $\left\{1+7 k \mid k \in \mathbb{N}_{0}\right\}$ ，we have that the element 15^{6} can only be factored into $3^{6} \cdot 5^{6}$ and $(15)^{6}$ ．

Example of Length Density in Regular ACMs

Example

For the monoid $M_{1,7}$ ，which is the set $\left\{1+7 k \mid k \in \mathbb{N}_{0}\right\}$ ，we have that the element 15^{6} can only be factored into $3^{6} \cdot 5^{6}$ and $(15)^{6}$ ．

This means $L\left(15^{6}\right)=\{2,6\}$ ，implying $\operatorname{LD}\left(15^{6}\right)=\frac{1}{4}$ and $\operatorname{LD}\left(M_{1,7}\right) \leq \frac{1}{4}$.

Example of Length Density in Regular ACMs

Example

For the monoid $M_{1,7}$ ，which is the set $\left\{1+7 k \mid k \in \mathbb{N}_{0}\right\}$ ，we have that the element 15^{6} can only be factored into $3^{6} \cdot 5^{6}$ and $(15)^{6}$ ．

This means $L\left(15^{6}\right)=\{2,6\}$ ，implying $\operatorname{LD}\left(15^{6}\right)=\frac{1}{4}$ and $\operatorname{LD}\left(M_{1,7}\right) \leq \frac{1}{4}$.

We can also prove by contradiction that $\frac{1}{4} \leq \frac{1}{\max \Delta(x)}$ ．So， $\operatorname{LD}\left(M_{1,7}\right) \geq \frac{1}{4}$ ．This forces $\operatorname{LD}\left(M_{1,7}\right)=\frac{1}{4}$ ．

Length Density in Local Singular ACMs

We now discuss $\operatorname{LD}\left(M_{a, b}\right)$ where $\operatorname{gcd}(a, b)=p^{\alpha}$ for $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$. Let β denote the least integer such that $p^{\beta} \in M$. Let $\delta(\alpha, \beta)$ denote the largest integer less than $\frac{\beta}{\alpha}$.

Length Density in Local Singular ACMs

We now discuss $\operatorname{LD}\left(M_{a, b}\right)$ where $\operatorname{gcd}(a, b)=p^{\alpha}$ for $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$ ．Let β denote the least integer such that $p^{\beta} \in M$ ．Let $\delta(\alpha, \beta)$ denote the largest integer less than $\frac{\beta}{\alpha}$ ．

Example

In the monoid $M_{9,15}, \alpha=1, \beta=2$ ，and $\delta(\alpha, \beta)=1$ ．

Length Density in Local Singular ACMs

We now discuss $\operatorname{LD}\left(M_{a, b}\right)$ where $\operatorname{gcd}(a, b)=p^{\alpha}$ for $p \in \mathbb{P}$ and $\alpha \in \mathbb{N}$ ．Let β denote the least integer such that $p^{\beta} \in M$ ．Let $\delta(\alpha, \beta)$ denote the largest integer less than $\frac{\beta}{\alpha}$ ．

Example

In the monoid $M_{9,15}, \alpha=1, \beta=2$ ，and $\delta(\alpha, \beta)=1$ ．

Theorem（Liu，Ma，and Zhang，2022）

For a local ACM $M_{a, b}$ ，the length density can be characterized as

$$
\operatorname{LD}\left(M_{a, b}\right)= \begin{cases}\varnothing & \text { if } \alpha=\beta=1 \\ 1 & \text { if } \alpha=\beta>1 \\ \frac{1}{\delta(\alpha, \beta)} & \text { if } \alpha<\beta\end{cases}
$$

$$
20 / 32
$$

Length Density of Meyerson＇s Monoid

Example

Recall Meyerson＇s monoid $M_{4,6}=\{1,4,10,16, \ldots\}$ ．
$21 / 32$

Length Density of Meyerson＇s Monoid

Example

Recall Meyerson＇s monoid $M_{4,6}=\{1,4,10,16, \ldots\}$ ．
Since $\operatorname{gcd}(4,6)=2^{1}, \alpha=1$ ．Also，$\beta=2$ since $4 \in M_{4,6}$ ．
$21 / 32$

Length Density of Meyerson＇s Monoid

Example

Recall Meyerson＇s monoid $M_{4,6}=\{1,4,10,16, \ldots\}$ ．
Since $\operatorname{gcd}(4,6)=2^{1}, \alpha=1$ ．Also，$\beta=2$ since $4 \in M_{4,6}$ ．
It has previously been shown that when $\alpha<\beta$ ，we have $\Delta\left(M_{4,6}\right)=\left[1, \frac{\beta}{\alpha}\right)$ ．Thus，$\Delta\left(M_{4,6}\right)=[1,2)=\{1\}$ ．

Length Density of Meyerson＇s Monoid

Example

Recall Meyerson＇s monoid $M_{4,6}=\{1,4,10,16, \ldots\}$ ．
Since $\operatorname{gcd}(4,6)=2^{1}, \alpha=1$ ．Also，$\beta=2$ since $4 \in M_{4,6}$ ．
It has previously been shown that when $\alpha<\beta$ ，we have $\Delta\left(M_{4,6}\right)=\left[1, \frac{\beta}{\alpha}\right)$ ．Thus，$\Delta\left(M_{4,6}\right)=[1,2)=\{1\}$ ．

We also have that $\frac{1}{\max \Delta(x)} \leq \mathrm{LD}(x)$ ．Thus， $1 \leq \operatorname{LD}\left(M_{4,6}\right)$ ．

Example

Now, recall that the element $10000 \in M_{4,6}$ factors as $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 10 \cdot 4$.
$22 / 32$

Example

Now，recall that the element $10000 \in M_{4,6}$ factors as $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 10 \cdot 4$.

Thus， $\mathrm{L}(10000)=\{3,4\}$ which implies $\operatorname{LD}(10000)=1$ ．

Example

Now, recall that the element $10000 \in M_{4,6}$ factors as $10 \cdot 10 \cdot 10 \cdot 10$ and $250 \cdot 10 \cdot 4$.

Thus, $\mathrm{L}(10000)=\{3,4\}$ which implies $\operatorname{LD}(10000)=1$.
By the definition of length density, $\mathrm{LD}\left(M_{4,6}\right) \leq 1$. So, our two bounds force $\operatorname{LD}\left(M_{4,6}\right)=1$.

References I

围 D．Anderson，D．F．Anderson，and M．Zafrullah．
Factorization in integral domains．
J．Pure Appl．Algebra，69（1）：1－19， 1990.
围 D．F．Anderson，S．T．Chapman，N．Kaplan，and D．Torkornoo．
An algorithm to compute ω－primality in a numerical monoid． In Semigroup Forum，volume 82，pages 96－108．Springer， 2011.

图 P．Baginski and S．T．Chapman．
Arithmetic congruence monoids：a survey．
In Combinatorial and Additive Number Theory，pages 15－38． Springer， 2014.

References II

围 P．Baginski，S．T．Chapman，and G．J．Schaeffer．
On the delta set of a singular arithmetical congruence monoid． J．Theor．Nr．Bordx．，20（1）：45－59， 2008.

围 M．Banister，J．Chaika，S．T．Chapman，and W．Meyerson．
On the arithmetic of arithmetical congruence monoids．
In Colloq．Math．，volume 1，pages 105－118， 2007.
目 M．Banister，J．Chaika，S．T．Chapman，and W．Meyerson． A theorem on accepted elasticity in certain local arithmetical congruence monoids．
Abh．Math．Semin．Univ．Hambg，79（1）：79－86， 2009.

References III

T．Barron，C．O＇Neill，and R．Pelayo．
On dynamic algorithms for factorization invariants in numerical monoids．
Math．Comput．，86（307）：2429－2447， 2017.
C．Brower，S．T．Chapman，T．Kulhanek，J．McDonough， C．O＇Neill，V．Pavlyuk，and V．Ponomarenko．
Length density and numerical semigroups．
Preprint．Available at arXiv：2110．10618， 2021.
S．T．Chapman．
A tale of two monoids：A friendly introduction to nonunique factorizations．
Math．Mag．，87（3）：163－173， 2014.

References IV

围 S．T．Chapman，P．A．García－Sánchez，Z．Tripp，and C．Viola． Measuring primality in numerical semigroups with embedding dimension three．
J．Algebra Appl．，15（01）：1650007， 2016.
围 S．T．Chapman，C．O＇Neill，and V．Ponomarenko．
On length densities．
In Forum Math．，volume 34，pages 293－306．De Gruyter， 2022.
圊 S．T．Chapman and D．Steinberg．
On the elasticity of generalized arithmetical congruence monoids． Results Math．，58（3）：221－231， 2010.

References V

围 S．T．Chapman and Z．Tripp．
ω－primality in arithmetic leamer monoids．
In Semigroup Forum，volume 99，pages 47－56．Springer， 2019.
圊 H．Davenport．
The higher arithmetic：An introduction to the theory of numbers．

Cambridge University Press， 1999.
R A．Fujiwara，J．Gibson，M．O．Jenssen，D．Montealegre， V．Ponomarenko，and A．Tenzer．
Arithmetic of congruence monoids．
Commun．Algebra，44（8）：3407－3421， 2016.

References VI

围 A．Geroldinger．
Chains of factorizations in weakly krull domains．
In Colloq．Math．，volume 72，pages 53－81， 1997.
圊 A．Geroldinger，A．J．Grynkiewicz，and W．A．Schmid． The catenary degree of krull monoids i．
J．Theor．Nr．Bordx．，23（1）：137－169， 2011.
围 A．Geroldinger and F．Halter－Koch．
Non－unique factorizations：Algebraic，combinatorial and analytic theory．
Chapman and Hall／CRC， 2006.

References VII

A．Geroldinger and W．Hassler．
Local tameness of v－noetherian monoids．
J．Pure Appl．Algebra，212（6）：1509－1524， 2008.
（ A．Geroldinger and Q．Zhong．
The catenary degree of krull monoids ii．
J．Aust．Math．Soc．，98（3）：324－354， 2015.
圊 F．Halter－Koch．
Arithmetical semigroups defined by congruences．
In Semigroup Forum，volume 42，pages 59－62．Springer， 1991.

References VIII

目 J．Hartzer and C．O＇Neill．
On the periodicity of irreducible elements in arithmetical congruence monoids．
Preprint．Available at arXiv：1606．00376， 2016.
围 W．Narkiewicz．
On algebraic number fields with non－unique factorization，ii． In Colloq．Math．，volume 15，pages 49－58．Institute of Mathematics Polish Academy of Sciences， 1966.

目 M．Omidali．
The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences．
2012.

References IX

图 C．O＇Neill．
On factorization invariants and hilbert functions．
J．Pure Appl．Algebra，221（12）：3069－3088， 2017.
R．O＇Neill and R．Pelayo．
How do you measure primality？
Amer．Math．Monthly，122（2）：121－137， 2015.
C．O＇Neill and R．Pelayo．
Realisable sets of catenary degrees of numerical monoids．
Bull．Aust．Math．Soc．，97（2）：240－245， 2018.

Acknowledgments

We would like to thank
－Professor Scott T．Chapman and Harold Polo for mentoring us throughout this time period，

Acknowledgments

We would like to thank
－Professor Scott T．Chapman and Harold Polo for mentoring us throughout this time period，
－the PRIMES program for giving us this opportunity to participate in pure math research and learn topics we would not otherwise touch upon in high school，

Acknowledgments

We would like to thank
－Professor Scott T．Chapman and Harold Polo for mentoring us throughout this time period，
－the PRIMES program for giving us this opportunity to participate in pure math research and learn topics we would not otherwise touch upon in high school，
－our parents for supporting us throughout this process，

Acknowledgments

We would like to thank
－Professor Scott T．Chapman and Harold Polo for mentoring us throughout this time period，
－the PRIMES program for giving us this opportunity to participate in pure math research and learn topics we would not otherwise touch upon in high school，
－our parents for supporting us throughout this process，
－and you，our listeners．

