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A Cute Robot in A Cute Maze

We (a cute robot) need to find the optimal path in this maze!

We could try every path in the maze, but this is inefficient :(
Let’s use Reinforcement Learning! Every time we take an
action, we receive a reward, which shapes our future actions.
Let’s formalize this notion...
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Markov Decision Processes

Definition of MDP (Markov Decision Process)

M := (S,A,R,P)

S is state space: Set of all states in which the agent may
be

A is action space: Set of all actions which the agent may
take in a state

R : S ×A → R is reward function: Outputs the reward
given to the agent when taking action a in state s

P : S ×A× S → [0, 1] is transition dynamics function:
Outputs the probability of the agent transitioning to new
state s ′ if it takes action a in state s
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ϵ-greedy Policy

Definition of policy π

A policy π is a mapping of the state and action spaces to a
probability that dictates the agent’s behavior.

ϵ-greedy:

Probability ϵ: sample random action

Probability 1− ϵ: take best perceived action
argmaxa Q(s, a).
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Q-values

Now how does RL work? Central goal is to learn an optimal
policy (i.e. behavior)

Q-values store how “good” a state is
Approaches the expected value Q(st , at) ≈ E[

∑∞
t=0 γ

tRt ].
Learned via Bellman optimality equation:

Q(st , at)← (1− α)Q(st , at) + α(Rt + γmax
a

Q(st+1, a)).

Heat map of learned Q-values:
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Adversarial RL

What if something perturbs the MDP?

Performance can be degraded by:

Human biases

Modeling errors

Actual adversaries
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Robust RL

Definition

Robust RL aims to find the best-performing policy in the
worst-case scenario. It can be framed as a 2-player zero-sum
game.
Objective: Find the policy π that satisfies:

max
π

min
P

Eπ,P

[∑
t

Rt

]
,

where P is the environment and Rt is the reward at time t.

Robust RL Methods Include:

Injecting noise into the environment during training
(Maximum Entropy)

Train the agent in an environment with an adversary that
corrupts the reward function
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Best of Both Worlds

We want to perform well in all environments, not just
worst-case scenarios...

Best of Both Worlds!

Definition

Best of Both Worlds: We want performance that degrades
gracefully with an increasing corruption level, can be used in RL

Best of Both Worlds Methods:

Layering algorithms designed for varying corruption levels
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Problem Setting

Previous work [2] in Best-Of-Both-Worlds has focused on
bandit MDPs We consider layered

For every sample, our
adversary is able to:

Corrupt the edges that victim traverses with probability p

Corrupt that edge’s reward by a maximum of δ each
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Calculating Adversarial Budget to Switch Paths

Adversary wants to make optimal path seem worse than some
suboptimal path, how much budget does it have? (victim
traverses each path equally)

Consider the following MDP:

Naive Approach: pδ each from corrupting AB up and CE down
whenever paths 3 and 1 are traversed, yielding 2pδ
Our Approach: 2pδ+ extra 1

2pδ of “free corruption” from
corrupting AC whenever path 2 is traversed
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Adversarial Attack

Let’s attack! Given that p = 0.25 and δ = 4;pδ = 1

Budget of Switching:
1 with 3: 25

6 , not enough to switch paths :(
2 with 3: 2, enough to switch paths :)
4 with 3: 21

2 , enough to switch paths :)
We choose to switch path 3 with path 4
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Proof of Optimality (Sketch)

Our algorithm is optimal

1 Reduce showing that our algorithm picks the optimal path
to showing our algorithm calculates budget optimally

Suppose otherwise that our algorithm didn’t pick path
with lowest reward. This means we didn’t calculate budget
optimally for a path with lower reward. Thus, we will prove
our algorithm picks set of corrupted edges optimally.

2 Picking just one edge in each traversal is optimal.

3 Our algorithm picks the edge that is optimal in every
traversal.

Suppose otherwise that there exists an edge set to corrupt
that is more optimal. Consider edges that differ from
algorithm’s set to optimal set.
These substitutions will not yield greater corruption since
algorithm chooses edge on least number of paths, which
guarantees the maximum amount.
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Adversarial Algorithm Against ϵ-Greedy Victim

We have an adversarial strategy against a simple victim... now
we consider a smart one!

What is the optimal strategy for an adversary against a victim
with an ϵ-greedy policy?

Can’t assume equal path traversal, sample complexity is
tricky
Perturbing edges not in the optimal path or path to be
switched has an effect, especially for small budget

Chebyshev’s Inequality bound on expected reward of this
strategy: it is less than (r1 + r3) · (N1 + N3)pδ

2 1−p
(r1−r3)2
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Can’t assume equal path traversal, sample complexity is
tricky
Perturbing edges not in the optimal path or path to be
switched has an effect, especially for small budget

Chebyshev’s Inequality bound on expected reward of this
strategy: it is less than (r1 + r3) · (N1 + N3)pδ

2 1−p
(r1−r3)2
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Future Work

How does victim defend against adversary strategy
outlined above using Best-of-Both-Worlds?

Devise layering algorithm for victim defense

More generally: set up minimax between victim and
adversary to fully describe their behaviors in the MDP

What is the value of corrupting a path that is neither the
optimal path nor the path we are trying to switch with it?
Is there value in confusing the victim in this way? When is
this helpful?



How Optimal
Can We Get:
Stochastic

and
Adversarial

Reinforcement
Learning

Alicia Li and
Mati Yablon

Background

Our Approach

Conclusion

References

Acknowledgements

We would like to thank...

MIT PRIMES; Dr. Slava Gerovitch and Dr. Srini Devadas
for this wonderful opportunity

Mayuri Sridhar for being an amazing mentor

You!



How Optimal
Can We Get:
Stochastic

and
Adversarial

Reinforcement
Learning

Alicia Li and
Mati Yablon

Background

Our Approach

Conclusion

References

References

[1] Ben Eysenbach. Maximum Entropy RL (Provably) Solves
Some Robust RL Problems. https:
//bair.berkeley.edu/blog/2021/03/10/maxent-

robust-rl/. Accessed 29 June 2022.

[2] Thodoris Lykouris, Vahab Mirrokni, and
Renato Paes Leme. “Stochastic bandits robust to
adversarial corruptions”. In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of
Computing. 2018, pp. 114–122.

[3] Lerrel Pinto et al. “Robust adversarial reinforcement
learning”. In: International Conference on Machine
Learning. PMLR. 2017, pp. 2817–2826.

[4] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning, second edition: An Introduction. 2018. isbn:
9780262352703.

https://bair.berkeley.edu/blog/2021/03/10/maxent-robust-rl/
https://bair.berkeley.edu/blog/2021/03/10/maxent-robust-rl/
https://bair.berkeley.edu/blog/2021/03/10/maxent-robust-rl/

	Background
	Our Approach
	Conclusion
	References

