# Truly Anonymous Sealed Sender in Signal

By Eric Chen and Boyan Litchev Mentored by Kyle Hogan and Simon Langowski

### What is Signal?

- Privacy-conscious messaging app
  - End-to-end encrypted
- 40 million monthly active users



### **Motivation**

### **Confidentiality vs Anonymity**

• Confidentiality  $\rightarrow$  people don't know the *contents* of a conversation

O Message is encrypted

Anonymity → don't know the participants of a conversation
 Or the social graph of a network)

### A Case for Anonymity

- Subpoenas
- Protest organization
- Whistleblowers
- Accuracy for research and surveys

### Signal & Anonymous Communication



- Post Office knows message contents
- Post Office knows who Boyan and Eric are



- Post Office knows message contents
- Post Office knows who Boyan and Eric are

#### **Sealed Sender Messaging**



- Post Office doesn't know message
- Post Office doesn't know who sent the message

#### **Sealed Recipient**



• Post Office can't deliver the message

## Sealed Sender's Anonymity Guarantees

#### The Long Term

• Over time, Sealed Sender doesn't prevent the post office from knowing that Boyan and Eric are talking

#### **A Standard Conversation**



#### **A Standard Conversation**



#### The Digital World

- Boyan and Eric text back rapidly

   Delivery receipts are sent within
   ~2 seconds
- Signal can see messages to Eric are consistently close to messages to Boyan
  - Over time, knows they are talking



#### Our Goal

- Server shouldn't directly know that Eric and Boyan are talking
- Avoid timing-based attacks, by either
  - Hiding timing for messages
  - Hiding at least one of the participants

# **Recipient Anonymity & PIR**

#### **Anonymous Receiving**

• If receiver is anonymous, server can't directly deliver it there



#### P.O. Boxes

- Can rent without revealing your identity
- Boyan and Eric agree on a box beforehand, then Boyan delivers it to that box



#### P.O. Boxes

- Can rent without revealing your identity
- Boyan and Eric agree on a box beforehand, then Boyan delivers it to that box
  - Post Office figures out who Eric is when he opens the box Boyan delivered into



#### **Private Letter Retrieval**

- Need to break linkage between box Eric accesses and who Eric is talking to
- To prevent the Post Office from knowing which box he needed to open, Eric opens all the boxes



#### **No Delivery**

- Eric has to go to the Post Office repeatedly, can't have the message delivered
  - Even if Eric received no mail

#### **Digital Private Letter Retrieval**

- Trivial implementation is to just ship everyone a copy of the database
  - Doesn't violate confidentiality due to encryption
- Huge network costs



#### **Private Information Retrieval**

- Messages pushed into digital mailboxes
- Eric sends a query which will operate on every database element indistinguishably
  - Signal can't tell which element was accessed





#### **Private Information Retrieval (PIR) Basics**

- Query is all 0s and one
   1
- Multiply each database element by query
- Add those up to get result
- Response is only the size of a single element



### **PIR + Sealed Sender = Anonymity**

- Sealed Sender provides sender anonymity
- PIR provides recipient anonymity

### **Our Scheme**



#### **Overall Goal**

- One person is always anonymous, and gets both sender and recipient anonymity
  - Signal can't tell Boyan and Eric are talking to each other



#### Our protocol: Sealed Sender only: **Protocol Comparisons** Recipient Recipient Time Time To: Carol To: Carol 0 0 S S From: Alice 1 To: David 1 S S To: Boyan To: Boyan 1.5 s 1.5 s To: Eric 3 From: Boyan 3 s To: David To: David 6 6 S S From: Alice 7 To: Alice 7

29

~

#### **An Asymmetric Protocol**

- Only Eric is anonymous
  - Sending and Receiving use different protocols
- This is sufficient to hide that Boyan and Eric are talking
- One user sends through sealed sender and the other writes to a PIR mailbox



#### **Pushing Responses**

- Any conversations stay in the same mailbox
  - Queries stay the same
- Since query is always the same, we can have Signal store it
- Signal can re-evaluate periodically and push out the update
  - Even if someone isn't online, they don't lose anonymity

#### **PIR Optimizations**

 Can update queries instead
 Database:
 of recomputing

Query:

Store PIR results

|   | Gtg | Hi     | Ok    | <del>Btw</del><br>Ftw | Pog   | Imo   | Jk    | Суа |      |
|---|-----|--------|-------|-----------------------|-------|-------|-------|-----|------|
|   | 0   | 1      | 0     | 0                     | 0     | 0     | 0     | 0   |      |
| х |     | 1      |       |                       |       |       |       | 1   |      |
|   | 0   | + Hi → | - 0 - | + 0 -                 | - 0 - | + o - | + o - | + 0 | = Hi |

#### **Other PIR Details**

- Queries can be compressed to only encode for one index, instead of having a ciphertext for each index
  - Query sizes are ~14 KB in state of the art schemes
- High network costs (~2.5 times larger responses)
  - On 2KB elements, we send 200 GB per push
  - Sending un-needed responses
    - Much more bandwidth needed

#### Takeaways

- Our protocol doesn't require constant activity
- Hides that Boyan and Eric are talking to each other
- Less computationally expensive than similar protocols

#### Acknowledgments

- Thanks to MIT PRIMES for making this project possible
- Thanks to our mentors Kyle Hogan and Simon Langowski

## **Any Questions?**