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Abstract. A submonoid of the additive group Q is called a Puiseux monoid if
it consists of nonnegative rationals. Given a monoid M , the set consisting of all
nonempty finite subsets of M is also a monoid under the Minkowski sum, and it
is called the (finitary) power monoid of M . In this paper we study atomicity and
factorization properties in power monoids of Puiseux monoids. We specially focus
on the ascent of the property of being atomic and both the bounded and the finite
factorization properties (the ascending chain on principal ideals and the length-finite
factorization properties are also considered here). We prove that both the bounded
and the finite factorization properties ascend from any Puiseux monoid to its power
monoid. On the other hand, we construct an atomic Puiseux monoid whose power
monoid is not atomic. We also prove that the existence of maximal common divisors
for nonempty finite subsets is a sufficient condition for the property of being atomic
to ascend from a Puiseux monoid to its power monoid.

1. Introduction

Let M be an (additive) monoid. For nonempty subsets S and T of M , the set
S + T := {s + t | s ∈ S and t ∈ T} is called the Minkowski sum of S and T in M . It
is clear that the set P(M) consisting of all nonempty subsets of M is also a monoid
under the Minkowski sum, which is called the power monoid of M . In addition, the
submonoid of P(M) consisting of all its nonempty finite subsets is called the finitary
power monoid of M and is denoted by Pfin(M). Power monoids and finitary power
monoids were systematically investigated in the second half of the past century by
Tamura et al. (see [37] and references therein). Two of the most investigated problems
in the context of power monoids were the ascent of algebraic properties from the monoid
M to P(M) and the isomorphism problem (that is, whether the fact that P(M) and
P(M ′) are isomorphic in certain prescribed class of monoids guarantees that M and
M ′ are also isomorphic). For more into these two problems and further progress on
the study of power monoids, see [34] and references therein.
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A submonoid of the additive group Q is called a Puiseux monoid if it consists of
nonnegative rationals. Puiseux monoids have played a crucial role to construct needed
counterexamples in commutative ring theory; see, for instance, [30, Theorem 1.3] and
[2, Example 1.1] (more recent applications of Puiseux monoids to commutative ring
theory can be found in [14, Section 4], [27, Section 3], and [29, Main Theorem]). How-
ever, it was not until recently that a systematic investigation of the atomic structure of
Puiseux monoids was initiated by Gotti [24]. Since then, Puiseux monoids have been
actively investigated from the factorization-theoretical viewpoint (see [19] and refer-
ences therein). For a survey on the atomicity and factorizations of Puiseux monoids,
see [11].

The central algebraic objects that we study in this paper are finitary power monoids
of Puiseux monoids. For simplicity, from now on we will use the simpler term “power
monoid” to refer to “finitary power monoids” (this should not cause any confusion
because we do not deal at all with non-finitary power monoids). Additive monoids
consisting of nonnegative integers, also known as numerical monoids, account up to iso-
morphism for all finitely generated Puiseux monoids. Factorizations and certain arith-
metical aspects of the power monoid Pfin(N0) were studied by Fan and Tringali in [15],
while atomic and ideal-theoretical aspects of power monoids of numerical monoids were
recently studied by Bienvenu and Geroldinger in [7]. Most recently, the isomorphism
problem in the class consisting of all the (restricted) power monoids of Puiseux monoids
was settled in [38] by Tringali and Yan. The primary problem we consider in this paper
is the ascent of certain atomic and factorization properties from Puiseux monoids to
their corresponding power monoids.

A commutative monoid is called atomic provided that every non-invertible element
can be written as a finite sum of atoms (i.e., irreducible elements). The ascent of
atomicity from the class of Puiseux monoids to that of their monoid algebras was in-
vestigated by Coykendall and Gotti in [14] and, more recently, by Gotti and Rabinovitz
in [29] (the ascent of atomicity from the class of torsion-free commutative monoids to
that of their monoid algebras was first posed as an open problem by Gilmer in [23,
page 189]). In Section 3, we tackle the ascent of atomicity from the class of Puiseux
monoids to that of their power monoids: we prove that, in general, the property of
being atomic does not ascend to power monoids of Puiseux monoids. On the other
hand, we prove that the same property does ascend if we restrict to the class of MCD
Puiseux monoids (a commutative monoid is called an MCD monoid if every nonempty
finite set has a maximal common divisor). In Section 3, we also show that the ascend-
ing chain condition on principal ideals (ACCP) ascends to power monoids of Puiseux
monoids (the ACCP has been largely investigated in connection to atomicity: see the
recent papers [26, 27] and references therein).

Following [2], we say that an atomic monoid is a bounded factorization monoid
provided that every non-invertible element has a finite set of factorization lengths (the
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length of a factorization is the number of atoms it has, counting repetitions). Following
the same paper, we say that an atomic monoid is a finite factorization monoid provided
that every non-invertible element has only finitely many factorizations (clearly, every
finite factorization monoid is a bounded factorization monoid). Both the bounded and
the finite factorization properties have been actively investigated since they were intro-
duced in the context of integral domains by Anderson, Anderson, and Zafrullah in [2]
and generalized to the context of cancellative commutative monoids by Halter-Koch
in [32] (see the recent survey [3] and references therein). The main purpose of Section 4
is to consider the ascent of both the bounded and the finite factorization properties.
We prove that both properties ascend to power monoids of Puiseux monoids. As the
bounded factorization property, the length-finite factorization property, recently intro-
duced by Geroldinger and Zhong in [22], is a weaker notion of the finite factorization
property. We argue in Section 4 that the length-finite factorization property does not
ascend to power monoids of Puiseux monoids.

2. Background

In the background section of this paper, we will be covering key concepts about
commutative monoids, which are essential for understanding the results we will discuss
later. For any terms or notations on commutative monoids not defined here, the reader
can consult [31]. Additionally, [22] offers a recent survey of factorization in commutative
monoids.

2.1. General Notation. We define the set of natural numbers, excluding zero, as
N := {1, 2, . . .}, and when including zero, it is represented as N0 := N ∪ {0}. For any
two integers x, y ∈ Z, the interval of integers between them is denoted by Jx, yK, which
is an empty set if x > y. Furthermore, for any subset X of R and a real number r,
the set X≥r is conformed by all elements x in X that are greater than or equal to r.
Similarly, X>r is used to represent elements strictly greater than r.

For every q ∈ Q>0, there exist unique natural numbers n and d such that q = n/d
and gcd(n, d) = 1, which we denote as n(q) and d(q), respectively. We call n(q) and d(q)
the numerator and denominator of q, respectively. The pd-adic valuation for a nonzero
integer n is the highest value in the set {k ∈ N | dk divides n}, denoted by vd(n). For
any rational number q, its pd-adic valuation is defined as vd(q) = vd(n(q))− vd(d(q)).

2.2. Commutative Monoids. In this paper, a monoid is understood as a commu-
tative semigroup with an identity element. Let M be a monoid. As we are assuming
every monoid here is commutative, we will be using additive notation, unless otherwise
is specified. In particular, “+” denotes the operation of M , while 0 denotes the identity
element. We define M• as M excluding the zero element, and M is called trivial if
M• is empty. The group of invertible elements within M is represented as M×. The
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reduced monoid of M , denoted Mred, is the quotient of M by M×. In addition, we
say that M is reduced if M× is the trivial group, in which case we identify Mred with
M . The monoid M is said to be torsion-free if nr = ns for some n ∈ N and r, s ∈ M
implies r = s. An element t ∈ M is called cancellative if for all r, s ∈ M , the equality
r+ t = s+ t implies that r = s, and the whole monoid M is called cancellative We say
that the monoid M is cancellative if every element of M is cancellative. On the other
hand, the monoid M is called unit-cancellative if for all r, s ∈ M , the equality r+s = r
guarantees that s ∈ M×. It follows from the given definitions that every cancellative
monoid is unit-cancellative.

For elements r, s ∈ M , s is said to divide r in M if there exists t ∈ M such that
r = s+ t; in this case, we write s |M r. A submonoid M ′ of M is called a divisor-closed
submonoid if any element of M dividing an element of M ′ is in M ′ as well. Given a
subset S of M , the smallest submonoid of M containing S is denoted by ⟨S⟩, and in
this case, S is called a generating set of ⟨S⟩. The monoid M is finitely generated if it
can be expressed as M = ⟨S⟩ for some finite subset S of M .
An element a in M \ M× is an atom if for a = r + s with r, s ∈ M , either r or s

belongs to M×. The set of all atoms in M is denoted by A (M). In a reduced monoid
M , we note that A (M) is included in any generating set of M . An element b ∈ M is
called atomic if it is in the submonoid of M generated by A (M). Following [12], we
say that M is atomic if every non-invertible element in M is atomic.

We say that d ∈ M is a maximal common divisor (or mcd) of A ⊂ M if d divides
every element in A and does not exists a non-invertible element d′ ∈ M such that d′+d
also divides every element in A. Notice that not every subset A of M has an mcd. We
call M a k-MCD monoid, for some k ∈ N, if every subset A ⊂ M such that |A| = k, has
a maximal common divisor. Furthermore, we call M an MCD-monoid if M is k-MCD
for every k ∈ N.
A subset I of M is an ideal if the set

I +M := {r + s | r ∈ I and s ∈ M}
is a subset of I. An ideal of M is called proper if it is strictly contained in M . The
ideals of the form b +M := {b} +M for some b ∈ M are called principal ideals. We
say that M satisfies the ascending chain condition on principal ideals (ACCP) if every
ascending chain (rn + M)n∈N of principal ideals of M eventually stabilizes; that is,
there is an n0 ∈ N such that rn +M = rn+1 +M for every n ≥ n0. It follows from [15,
Theorem 2.28] that if a unit-cancellative monoid satisfies the ACCP, then it must be
atomic.

2.3. Factorizations. A multiplicative monoid F is said to be free on a subset A if
every element x ∈ F has a unique representation in the form

x =
∏
a∈A

ava(x),
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where va(x) ∈ N0 and va(x) > 0 only for finitely many a ∈ A. For any given set A,
there is a unique free monoid F on A, up to isomorphism. The free monoid formed
on A (Mred), labeled Z(M), is called the factorization monoid of M , and its elements
are known as factorizations. For a factorization z = a1 · · · an in Z(M), n is called the
length of z, and is denoted by |z|. The monoid homomorphism from Z(M) to Mred,
which takes each atom to itself, is called the factorization homomorphism of M . The
set of all factorizations of an element x ∈ M , named Z(x), is the inverse image of x
under the factorization homomorphism. Observe that M is atomic if and only if every
element in M has at least one factorization. For each x ∈ M , the set of lengths of x is
defined by

L(x) := LM(x) := {|z| : z ∈ Z(x)}.
The monoid M is called a UFM (unique factorization monoid) if each element has
exactly one factorization, an FFM (finite factorization monoid) if each element has a
finite number of factorizations, and an HFM (half-factorial monoid) if every factoriza-
tion of the same element has the same length. A monoid M is called BFM (bounded
factorization monoid) if it has a finite upper bound on the lengths of factorizations
for each of its elements. It follows from [15, Theorem 2.28 and Corollary 2.29] that
if a unit-cancellative monoid is a BFM, then it must satisfy the ACCP. We call the
monoid M an LFM (length-factorial monoid) if every element of M has at most one
factorization of length k for each k ∈ N. Observe that if M is both HFM and LFM,
then M is a UFM. Additionally, we say that M is an LFFM (length-finite factorization
monoid) if the set {z ∈ Z(x) : |z| = k} is finite for every x ∈ M and k ∈ N. Observe
that if the monoid M is an LFFM and a BFM at the same time, then it is an FFM.

2.4. Numerical and Puiseux Monoids. A numerical monoid1 is a submonoid of
(N0,+) characterized by having a finite complement in N0. For a numerical monoid
N different from N0, its largest element is referred to as the Frobenius number of N ,
denoted as F (N). Numerical monoids are finitely generated and, therefore, FFMs (see
[20, Proposition 2.7.8]). Numerical monoids have been the subject of an extensive
study, revealing connections across various mathematical fields and practical applica-
tions (see [17, 5] for a comprehensive overview).

On the other hand, a Puiseux monoid is a submonoid of (Q≥0,+). In contrast to
numerical monoids, Puiseux monoids may be neither finitely generated nor atomic, as
it is the case of Q≥0, whose set of atoms is empty. Interestingly, some atomic Puiseux
monoids are not BFMs, such as ⟨1/p | p ∈ P⟩, while others can be BFMs but not FFMs,
like {0}∪Q≥1. The exploration of Puiseux monoids, particularly in factorization theory
and their relevance in both commutative and non-commutative contexts, has become
a subject of recent scholarly interest (see [10, 11, 14, 30, 6]).

We say that a sequence of rational numbers is well-ordered (resp., co-well-ordered) if
it contains no strictly decreasing (resp., increasing) subsequence. Following [35], we say

1Numerical monoids are often called “numerical semigroups” in the literature.
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that a Puiseux monoid M is well-ordered (resp., co-well-ordered) if it can be generated
by a well-ordered (resp., co-well-ordered) sequence. There are atomic Puiseux monoids
that are neither well-ordered nor co-well-ordered (see [33, Example 3.1]).

2.5. Power Monoids and Restricted Power Monoids. Let M be a monoid. The
concept of power monoids emerges from considering the set conformed by all nonempty
finite subsets of a monoid M , which we denote as Pfin(M). For any two elements
S, T ∈ Pfin(M), their sum is defined by

S +′ T := {s+ t | s ∈ S and t ∈ T}.
This operation endows Pfin(M) with a monoid structure, hereafter referred to as +
for simplicity (this will hardly cause any ambiguity).

Definition 2.1. For a monoid M , the power monoid of M is the monoid Pfin(M)
under the sum operation defined before.

Further, we introduce Pfin,×(M), which is the subset of Pfin(M) consisting of those
elements intersecting with M×; that is,

Pfin,×(M) := {S ∈ Pfin(M) | S ∩ M× is nonempty}.
This subset forms a submonoid, known as the restricted power monoid of M .

Definition 2.2. For a monoid M , the restricted power monoid of M is the submonoid
Pfin,×(M) of Pfin(M).

One can readily check that Pfin and Pfin,×(M) are cancellative if and only if M
is the trivial monoid. In addition, it follows from [15, Proposition 3.5] that Pfin

and Pfin,×(M) are unit-cancellative when M is a totally ordered monoid, so the
power monoid and the restricted power monoid of any given Puiseux monoid are unit-
cancellative.

3. Atomicity in Power Monoids of Puiseux Monoids

The main goal of this section is to investigate when the property of being atomic
ascends from a Puiseux monoid to its corresponding power monoid (i.e., to investigate
under which conditions the power monoid of an atomic Puiseux monoid is also atomic).
First, we argue the following lemma.

Lemma 3.1. Let M be a Puiseux monoid. Let B be an element of Pfin(M). Then the
following statements hold.

(1) If |B| = 1, then |B + C| = |C| for every C ∈ Pfin(M).

(2) If |B| ≥ 2, then |B + C| > |C| for every C ∈ Pfin(M).
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Proof. (1) This follows immediately.

(2) Let b1 and b2 be elements of B, with b1 < b2. We have that |{b1}+C| = |C| since
Puiseux monoids are cancellative. Let c be the maximum element of C. Then c+ b2 >
c+ b1 and, therefore, c+ b2 is not in {b1}+C. Hence |B +C| ≥ |{b1}+C|+ 1 > |C|,
which concludes the proof. □

It is hardly a surprise that atomicity does not ascend from a Puiseux monoid to its
power monoid (as atomicity does not ascend neither to polynomial extensions [36] nor
to monoid algebras over fields [14]). However, it does if we impose the existence of
maximal common divisors.

Theorem 3.2. For an atomic Puiseux monoid M , the following statements hold.

(1) If M is an MCD-monoid, then Pfin(M) is atomic.

(2) If M is not 2-MCD, then Pfin(M) is not atomic.

Proof. Let M be an atomic Puiseux monoid and, or simplicity, set P := Pfin(M).

(1) Suppose that M is an MCD-monoid. Assume, by way of contradiction, that P is
not atomic, and then fix a non-atomic element B0 of P. Since B0 is non-atomic, there
exists a strictly descending chain of non-atomic elements of P starting at B0, that is, a
sequence (Bn)n∈N0 of non-atomic elements of P such that Bn+1 |P Bn and Bn+1 ̸= Bn

for every n ∈ N0. Now Lemma 3.1 guarantees the existence of N ∈ N such that
k := |Bn| = |BN | for every n ≥ N . Among all the strictly descending chains of non-
atomic elements of P starting at B0, assume that (Bn)n≥0 is on minimizing k. Thus,
every divisor of BN in P has cardinality either 1 or k. Write BN = {b1, b2, . . . , bk}. Let
d be a maximal common divisor of b1, b2, . . . , bk in M . Then the only common divisor
of A := {b1 − d, b2 − d, . . . , bk − d} is {0}. The Lemma 3.1, along with the minimality
of k, ensures that in any decomposition of A as a sum of two elements in P, one of
them must be a singleton, and so one of them is {0}. Thus, A is an atom of P. In
addition, observe that {d} is an atomic element in P because d is atomic in M . Since
BN = A + {d}, the fact that both A and {d} are atomic elements of P implies that
BN is atomic, which is a contradiction. Hence P must be atomic.

(2) Suppose that M is not 2-MCD. Assume, by way of contradiction, that P is
atomic. Let b1, b2 be two elements of M that do not have a maximal common divisor.
Consider the element B := {b1, b2} of P. Because 0 is not a maximal common divisor
of b1 and b2 in M , we can take a nonzero d ∈ M such that d |M b1 and d |M b2. Thus,
B = {b1 − d, b2 − d} + {d}, and so B is not an atom of P. As P is atomic, we can
write B = A1 + A2 + · · · + Ak for some k ≥ 2 and atoms A1, A2, . . . , Ak of P. Since
|B| = 2, there exists an element among A1, . . . , Ak with size at least 2. Then we can
assume that |A1| ≥ 2. Thus, it follows from Lemma 3.1 that

2 = |B| = |A1 + (A2 + · · ·+ Ak)| > |A2 + · · ·+ Ak|,
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and so |Ai| = 1 for every i ∈ J2, kK, and so |A1| = |B| = 2. Write Ai = {ai} for every
i ∈ J2, kK, and set a := a2 + · · ·+ ak. Then A1 = {b1 − a, b2 − a}. Since b1 and b2 have
no maximal common divisor, there exists a nonzero d′ ∈ M such that d′ |M b1 − a and
d′ |M b2 − a. Then A1 = {b1 − a− d′, b2 − a− d′}+ {d′}, which contradicts that A1 is
an atom of P. □

As a consequence, showing that the property of being atomic does not ascend to
power monoids in the class of Puiseux monoids amounts to constructing an atomic
Puiseux monoid that is not a 2-MCD monoid. We will do so in the following example.

Example 3.3. We will exhibit an atomic Puiseux monoid M that is not a 2-MCD
monoid.

First, let us inductively construct a sequence of prime numbers with certain desired
properties. Take p0 = 17, and then suppose that for n ∈ N0, we have chosen primes
p0, . . . , p3n such that pi > 15 · 2i for every i ∈ J0, 3nK. Now take primes p3n+1, p3n+2,
and p3n+3 such that p3n+3 > p3n+2 > p3n+1 > max{p3n, 15 · 23n+3} and

(3.1) p3n+1 > max

{
n

(
4

5
−

n∑
i=0

1

p3i

)
, n

(
6

7
−

n∑
i=0

1

p3i

)}
.

Then, we have inductively constructed a strictly increasing sequence of primes (pn)n≥0

such that for every n ∈ N0, both the inequality (3.1) and pn > 15 · 2n hold. Therefore

(3.2)
∞∑
n=0

1

pn
<

1

15

∞∑
n=0

1

2n
=

2

15
<

1

7
.

Now, let M be the additive submonoid of Q defined as follows:

M :=

〈
1

p3n
,

1

p3n+1

(
4

5
−

n∑
i=0

1

p3i

)
,

1

p3n+2

(
6

7
−

n∑
i=0

1

p3i

) ∣∣∣ n ∈ N0

〉
.

It follows from (3.2) that
∑∞

n=0
1
pn

< 4
5
and, therefore, M is a Puiseux monoid. For

every n ∈ N0, set

an :=
1

p3n
, bn :=

1

p3n+1

(
4

5
−

n∑
i=0

1

p3i

)
, and cn :=

1

p3n+2

(
6

7
−

n∑
i=0

1

p3i

)
.

We claim that M is atomic with A (M) = {an, bn, cn | n ∈ N0}. To prove our claim, it
suffices to show that {an, bn, cn | n ∈ N0} ⊆ A (M). Observe that, for each n ∈ N0, the
generator bn is the only generator with negative p3n+1-adic valuation (which is negative
by virtue of the inequality (3.1)). As a consequence, we infer that bn is an atom of
M . Similarly, for each n ∈ N0, the generator cn is the only generator with negative
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p3n+2-adic valuation, and so cn is also an atom of M . To argue that an ∈ A (M) for
every n, fix j ∈ N0, and write

aj =
N∑
i=0

αiai +
N∑
i=0

βibi +
N∑
i=0

γici

for some N ∈ N and coefficients αi, βi, γi ∈ N0 for every i ∈ J0, NK. Suppose, for the
sake of a contradiction, that there exists k ∈ J0, NK such that βk ̸= 0. The fact that

the p3k+1-adic valuation of aj is 0, along with the inequality p3k+1 > n
(
4
5
−

∑k
i=0

1
p3i

)
,

guarantees that βk is a multiple of p3k+1. As a result,

1

p3j
= aj > βkbk >

4

5
−

k∑
i=0

1

p3i
>

4

5
− 1

7
>

∞∑
n=0

1

pn
,

which is a contradiction. Hence βi = 0 for every i ∈ J0, NK. In a similar manner, we
can argue that γi = 0 for every i ∈ J0, NK. Lastly, applying p3i-adic valuation to both

sides of the equality aj =
∑N

i=0 αiai for every i ∈ J0, NK\{j}, we obtain that αi = 0 for
any i ∈ J0, NK \ {j}, and so aj is an atom of M . Hence {an, bn, cn | n ∈ N0} ⊆ A (M),
and the claim is established. Hence the Puiseux monoid M is atomic with

A (M) = {an, bn, cn | n ∈ N0}.
Finally, we claim that M is not a 2-MCD monoid. Proving this amounts to showing

that 4
5
and 6

7
have no maximal common divisor in M . Observe that from the definition

of M , we obtain that 4
5
= p1b0 + a0 ∈ M , and in the same way we can see that 6

7
∈ M .

To show that 4
5
and 6

7
have no maximal common divisor in M , write 4

5
= q + d and

6
7
= r + d for some q, r, d ∈ M .

4

5
= q + d =

N ′∑
i=0

α′
iai +

N ′∑
i=0

β′
ibi +

N ′∑
i=0

γ′
ici

for some N ′ ∈ N and coefficients α′
i, β

′
i, γ

′
i ∈ N0 for every i ∈ J0, N ′K. As 4

5
has negative

5-adic valuation, βk ̸= 0 for some k ∈ J0, N ′K.
Now the fact that the p3k+1-adic valuation of 4

5
is 0, in tandem with the inequality

p3k+1 > n
(
4
5
−
∑k

i=0
1
p3i

)
, implies that βk is a multiple of p3k+1. Thus, any factorization

of 4
5
contains at least p3k+1 copies of the atom bk for some k ∈ N0. In a completely

similar way, we can argue that every factorization of 6
7
must contain at least p3ℓ+2

copies of the atom cℓ for some ℓ ∈ N0.
We proceed to argue that d ∈ ⟨an | n ∈ N0⟩. Suppose, by way of contradiction, that

a factorization of d contains an atom of the form bj for some j ∈ N0. This will ensure
the existence of a factorization z′ of 6

7
= r + d containing at least a copy of the atom

bj and, therefore, at least p3j+1 copies of the atom bj (here we are using once again

the inequality p3j+1 > n
(
4
5
−

∑j
i=0

1
p3i

)
). However, as we have seen in the previous
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paragraph, z′ must also contain at least p3ℓ+2 copies of the atom cℓ for some ℓ ∈ N0.
Therefore

6

7
≥ p3j+1bj + p3ℓ+1bℓ =

(
4

5
−

j∑
i=0

1

p3i

)
+

(
6

7
−

ℓ∑
i=0

1

p3i

)
>

6

7
,

which is a contradiction (the last inequality follows from the fact that
∑∞

n=0
1
pn

< 1
7
).

Thus, no factorization of d in M contains an atom in {bn | n ∈ N0}. In a similar way,
we can show that no factorization of d in M contains an atom in {cn | n ∈ N0}. Since
M is atomic, d ∈ ⟨an | n ∈ N0⟩, as desired.
Now suppose that z := zq + zd is a factorization of 4

5
, where zq is a factorization of

q and zd is a factorization of d. As z must contain at least p3k+1 copies of the atom bk
for some k ∈ N0, the fact that zd cannot contain any copy of the atom bk ensures that
zq contains at least p3k+1 copies of the atom bk. Thus, p3k+1bk = 4

5
−

∑k
i=0

1
p3i

divides

q in M . Now for each m > k, the fact that am divides 4
5
−

∑k
i=0

1
p3i

in M guarantees

that am divides q in M . Similarly, we can show that p3ℓ+2cℓ =
6
7
−

∑ℓ
i=0

1
p3i

divides r

in M for some ℓ ∈ N0, and so that for each m > ℓ, the element am divides r in M .
From the last two assertions, we infer that if we take m ∈ N with m > max{k, ℓ}, then
the atom am is a common divisor of both q and r in M , which means that d is not
a maximal common divisor of 4

5
and 6

7
in M . Hence 4

5
and 6

7
do not have a maximal

common divisor in M , and so we conclude that M is not a 2-MCD monoid.

Remark 3.4. According to [15, Proposition 3.2(v)], when a monoid M is cancellative,
if the power monoid of M is atomic, then M must be atomic. In light of Example 3.3,
we conclude that the converse of this statement does not hold.

In the following result we prove that, unlike atomicity, the ACCP ascends from a
Puiseux monoid to its power monoid.

Proposition 3.5. If a Puiseux monoid M satisfies the ACCP, then Pfin(M) also
satisfies the ACCP.

Proof. For simplicity, set P := Pfin(M). Now let (Bn+P)n∈N0 be an ascending chain
of principal ideals of P and let us prove that it stabilizes. From Lemma 3.1 we know
that there exists N ∈ N such that |Bn| = |BN | for every n > N . If |BN | = 1, then
(Bn + P)n∈N0 stabilizes since M satisfies the ACCP. Assume then that |BN | > 1. Let
(Cn)n≥N be a sequence of elements of P satisfying that Cn+1 + Bn+1 = Bn for every
n ≥ N . From Lemma 3.1 we know that |Cn| = 1 for every n > N , and then we can
write Cn = {cn}, for some cn ∈ M . Let b1,n, b2,n, . . . , bk,n, be the elements of Bn listed
in increasing order. Observe that cn+1 + bi,n+1 = bi,n for every n ≥ N . Then we have
that (bi,n +M)n≥N is an ascending chain of principal ideals of M for every i ∈ J1, kK.
Since M satisfies the ACCP, every one of those chains of principal ideals stabilizes.
Let ti be a positive integer such that bi,n = bi,ti for every i ∈ J1, kK and n > ti. Set
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t := max{ti | 1 ≤ i ≤ k}. Then Bn = Bt for every n > t, and therefore, (Bn + P)n∈N
stabilizes. As a result, the power monoid P satisfies the ACCP. □

We conclude this section by presenting an example of a power monoid of a Puiseux
monoid that is atomic but does not satisfy the ACCP. From the previous proposition
it is clear that the corresponding Puiseux monoid is not ACCP.

Example 3.6. Take r ∈ Q ∩ (0, 1) with n(r) ≥ 2, and consider the Puiseux monoid
Mr := ⟨rn | n ∈ N0⟩. It follows from [10, Theorem 2.3] that the monoid Mr is atomic
with A (Mr) = {rn | n ∈ N0}, and it is well known that Mr does not satisfy the ACCP.
In fact, observe that the identity

xn :=
n(r)n

d(r)n−1
=

n(r)n+1

d(r)n
+

(
n(r)− d(r)

)
n(r)n

d(r)n

is true for every n ∈ N, which yields that the ascending chain of principal ideals
(xn+Mr)n∈N does not stabilize. In addition, it was proved in [28, Example 4.3] that Mr

is an MCD-monoid. Now set P := Pfin(Mr) and Xn := {xn} for every n ∈ N. Observe
that the power monoid P does not satisfy the ACCP either because (Xn + P)n∈N is
an ascending chain of principal ideals of P that does not stabilize. Finally, the fact
that Mr is atomic and an MCD-monoid, in tandem with Theorem 3.2, ensures that P
is an atomic monoid. Then P is a power monoid of a Puiseux monoid that is atomic
but does not satisfies the ACCP.

4. The Bounded and Finite Factorization Properties

The main purpose of this section is to study the bounded and finite factorization
properties in the class of power monoids of Puiseux monoids, giving special attention
to the ascent of these properties from a Puiseux monoid to its power monoid. Be-
fore focusing on the class consisting of all power monoids of Puiseux monoids, let us
quickly argue that the restricted power monoid of every Puiseux monoid is an FFM.
Although this result is known in greater generality (see [13, Remark 5.5]), for the sake
of completeness we offer here an elementary and short inductive proof.

Proposition 4.1. The restricted power monoid of a Puiseux monoid is an FFM.

Proof. Let M be a Puiseux monoid, and set P := Pfin,0(M). Fix X ∈ P with
|X| ≥ 2, and let us show that X is atomic in P. We proceed by (strong) induction on
the cardinality of X. The case |X| = 2 is clear. Take k ∈ N with k ≥ 2, and assume
that each element of P whose size belongs to J2, kK is atomic. Suppose now that
|X| = k+1. If X is not an atom, then there exist A,B ∈ P with max{|A|, |B|} < |X|
such that X = A+B and, as |A| < |X| = k + 1 and |B| < |X| = k + 1, our inductive
hypothesis ensures that both A and B are atomic, whence X must be atomic.
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Now fix Y ∈ P•. Since every atom that divides Y in P is a subset of Y , there are
only finitely many atoms dividing Y in P. Also, if A is an atom dividing Y in P,
then no element of the form mA can divide Y when m > maxY . Thus, Y has only
finitely many factorizations. Hence P is an FFM, as desired. □

Here we present an example of a Puiseux monoid whose restricted power monoid is
neither an HFM nor an LFM.

Example 4.2. Consider the power monoid P := Pfin,0(N0). Observe that

{0, 1}+ {0, 1}+ {0, 1} and {0, 1}+ {0, 2}
are two factorizations of the element {0, 1, 2, 3} having different lengths. Hence P is
not an HFM. On the other hand, observe that

{0, 1}+ {0, 2}+ {0, 2} and {0, 1}+ {0, 1}+ {0, 3}
are two different factorizations of the element {0, 1, 2, 3, 4, 5} having the same length.
As a consequence, P is not an LFM.

We proceed to argue that both the bounded and the finite factorization properties
ascend from any Puiseux monoid to its power monoid.

Theorem 4.3. For a Puiseux monoid M , the following statements hold.

(1) If M is a BFM, then Pfin(M) is also a BFM.

(2) If M is an FFM, then Pfin(M) is also an FFM.

Proof. Set P := Pfin(M).

(1) Assume that M is a BFM. Now suppose, towards a contradiction, that the power
monoid P is not a BFM. Since M is a cancellative BFM, it must satisfy the ACCP
and, therefore, it follows from Proposition 3.5 that P also satisfies the ACCP. Thus,
from the fact that P is a unit-cancellative monoid satisfying the ACCP, one infers
that P is atomic.
As P is atomic but not a BFM, there must exist B ∈ P such that L(B) is not finite.

Since M is a BFM, we see that |B| ≥ 2. Fix a nonzero b ∈ B, and then take ℓ ∈ N
such that max LM(b) < ℓ (such an ℓ exists because M is a BFM). From Lemma 3.1
we know that every factorization in Z(B) has at most |B| atoms of cardinality greater
than 1. This, along with the fact that L(B) is not finite, guarantees the existence of a
factorization in Z(B) having at least ℓ atoms of cardinality 1, namely,

({a1}+ {a2}+ · · ·+ {aℓ}) + Zℓ ∈ Z(B),

where {a1}, {a2}, . . . , {aℓ} are atoms in A (P) for some a1, a2, . . . , aℓ ∈ M• and Zℓ is
a factorization of C := B − ({a1} + {a2} + · · · + {aℓ}) in P. Now we can take c ∈ C
such that b = (a1 + a2 + · · · + aℓ) + c. This equality, along with the fact that c is an
atomic element in M , yields a factorization of b in M with length at least ℓ, which
contradicts that max LM(b) < ℓ.
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(2) Assume now that M is an FFM. In particular, M is a BFM, and so it follows
from part (1) that the power monoid P is also a BFM. In order to prove that P is
an FFM it suffices to show that P is an LFFM. To argue this, we fix an element B
in P and a positive integer ℓ, and proceed to verify that B has only finitely many
factorizations of length ℓ. Set

C := {c ∈ M | c divides b for some b ∈ B}.

As M is a reduced FFM, it follows from [32, Corollary 2] that every element of M
has only finitely many divisors. This, in tandem with the fact that B is a finite set,
guarantees that C is a finite set. Now observe that a factorizations of B of length ℓ
in the power monoid P can be thought of as a multisets of cardinality ℓ consisting
of nonempty subsets of C, and it is clear that there are only finitely many of such
multisets (indeed, at most the number of ℓ-tuples of nonempty subsets of C). This,
along with the fact that P is atomic, allows us to conclude that P is an LFFM. Hence
the power monoid P is also an FFM, as desired. □

We conclude this section showing that, unlike the bounded and finite factorization
properties, the length-finite factorization property does not ascend from a Puiseux
monoid to its power monoid. In order to do so, we reuse the monoid constructed in
Example 3.3.

Proposition 4.4. There exists a Puiseux monoid that is an LFFM whose power
monoid is not an LFFM.

Proof. First, we argue that if (an)n≥1 and (bn)n≥1 are two co-well-ordered sequences
consisting of positive rationals, then the sequence (cn)n≥1 defined as c2n := an and
c2n−1 = bn for every n ∈ N is also co-well-ordered. Suppose to the contrary that
the sequence (cn)n≥1 is not co-well-ordered. Then we can find a strictly increasing
subsequence (c′n)n≥1 of (cn)n≥1. Since the terms of (c′n)n≥1 are terms of either (an)n≥1

or (bn)n≥1, the sequence (c′n)n≥1 must contain a subsequence (c′′n)n≥1 that is also a
subsequence of either (an)n≥1 or (bn)n≥1. Since (c′n)n≥1 is strictly increasing, so is
(c′′n)n≥1. Now if (c′′n)n≥1 is a subsequence of (an)n≥1, then we obtain a contradiction
with the fact that (an)n≥1 is a co-well-ordered sequence. If (c′′n)n≥1 is a subsequence of
(bn)n≥1, then we obtain a similar contradiction.

By the argument given in the previous paragraph, we infer that the sum of two
Puiseux monoids that are co-well-ordered is again a co-well-ordered, which inductively
implies that the sum of finitely many co-well-ordered Puiseux monoids is again co-
well-ordered. Now let M be the Puiseux monoid constructed in Example 3.3; that
is,

M :=

〈
1

p3n
,

1

p3n+1

(
4

5
−

n∑
i=0

1

p3i

)
,

1

p3n+2

(
6

7
−

n∑
i=0

1

p3i

) ∣∣∣ n ∈ N0

〉
.
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The monoid M is generated by the union of the underlying set of three decreasing
sequences, then M can be naturally expressed as the sum of three co-well-ordered
Puiseux monoids. Thus, M is a co-well-ordered Puiseux monoid. We have proved
in Example 3.3 that M is atomic, and so it follows from [33, Theorem 3.4] that M
is an LFFM. On the other hand, we have also argued in Example 3.3 that M is not
2-MCD, and so it follows from part (2) of Theorem 3.2 that the power monoid of M
is not atomic. Hence the power monoid of M is not an LFFM even though M is an
LFFM. □
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