Reinforcement Learning Based Serverless Container Autoscaler

Evan Ning*

Abstract—Cloud computing, characterized by vast
data centers with millions of high-performance com-
puters, has revolutionized the way developers run
code, offering scalability without the constraints of
hardware limitations. Serverless Function as a Service
(FaaS) within cloud computing has emerged as a pop-
ular paradigm, freeing users from resource manage-
ment responsibilities and adopting a pay-per-function-
call model. While this approach is resource-efficient
and cost-effective for users, it introduces challenges
for serverless providers in maintaining Quality of Ser-
vice (QoS). Effective resource allocation in server-
less environments is critical, yet challenging. Under-
provisioning can lead to function execution failures,
necessitating resource redeployment and compromis-
ing QoS. Conversely, over-provisioning results in inef-
ficiency as functions operate with more resources than
required. The dynamic nature of serverless environ-
ments, characterized by diverse functions with varying
workloads and short task durations, adds complexity
to resource allocation. Current serverless providers
often employ Finite-State-Machine (FSM)-based re-
source managers, necessitating manual tuning of pa-
rameters like autoscalers, load balancers, and CPU
frequency governors. To address these challenges,
machine learning methods, particularly reinforcement
learning (RL), have been explored. RL’s adaptability
to dynamic serverless environments, where functions
exhibit diverse characteristics, makes it a compelling
choice. In this paper, we present an RL-based ap-
proach to resource management, leveraging its ability
to simultaneously optimize multiple parameters with-
out manual intervention. Our implementation utilizes
RL algorithms, including Deep Q Learning, to provide
scaling recommendations for cloud providers, demon-
strating successful convergence in both horizontal and
vertical scaling scenarios. To evaluate our approach,
we constructed and replicated a serverless environ-
ment using vHive, vSwarm, and Kubernetes. The re-
sults indicate not only successful convergence in scal-
ing but also rapid adaptability—a crucial attribute in
the context of dynamic serverless environments. This
research contributes valuable insights into the applica-
tion of RL in serverless resource management, paving
the way for future advancements in the field.

*Milton Academy
TMassachusetts Institute of Technology

Nikita Lazarev’

Varun Gohil'

1 Introduction

Physically, cloud computing is a huge data center with
millions of high-quality computers. The cloud provider
can sell these individual computers for consumers to use
at a time basis (typically on a monthly or yearly basis)
and the consumer can run their code using the machines.
Cloud computing is great as it allows developers, ranging
from new startups to huge companies, to run code without
being constrained by hardware. Many companies opt to
use cloud computing because they not only do not need to
build their own data centers, but also can easily expand as
cloud computing offers virtually infinite resources.

Serverless Function as a Service (FaaS) is a type of
cloud computing that has gained lots of popularity re-
cently, with companies such as GrubHub and Netflix
switching to it. FaaS frees customers from managing their
own resources or function allocations, and instead cus-
tomers pay on a per function call basis. This method is not
only more resource efficient for everyone, but also more
cheap for the customer while maintaining a similar Qual-
ity of Service (QoS). However, the serverless provider
now has to manage the resources and functions for the cus-
tomer in such a way that the QoS can still be maintained.

There are many challenges for the serverless provider
when managing and allocating resources. One mistake is
to provision not enough resources for a certain function.
The function will not be able to execute, and the server-
less provider will have to redeploy the function with more
resources. This will make the latency of the function too
high, and the QoS will be violated. On the other hand,
if too many resources are provisioned, while QoS will be
maintained and the function will return, it is inefficient as
the function does not need that many resources. However,
these are not easy problems to solve because of the na-
ture of serverless environments. Due to the high amount
of different functions each requiring different loads and all
of them being relatively short tasks, it is difficult to adapt
and allocate resources.

Many current serverless providers use a Finite-State-
Machine (FSM) based resource manager to solve the prob-
lem of resource allocation. These require manual tuning
of hard coded parameters, such as an autoscaler, load bal-
ancer, CPU frequency governors, etc. Recently though,
machine learning methods have been tried, especially
reinforcement learning (RL). Reinforcement learning is
great as it is adaptable to a serverless environment, which
is dynamic with various different functions requiring dif-

ferent loads. One agent can tune all the previous param-
eters at once. Also, the data is abundant, with instant re-
ward able to be given making training easy. In this paper,
we attempt to use an RL algorithm in order to solve the
problem of resource management.

2 Related Work

In the realm of resource management for serverless com-
puting, the Aquatope [7] paper represents a notable contri-
bution by leveraging machine learning techniques. Specif-
ically, Aquatope employs a Long Short-Term Memory
(LSTM)-based model to analyze historical data, predict-
ing future resource requirements. This predictive resource
management approach offers insights into potential av-
enues for exploration and integration within a reinforce-
ment learning (RL) framework, showcasing the versatil-
ity of machine learning in enhancing resource allocation
strategies.

Additionally, the landscape of resource management in
cloud computing has seen diverse methodologies. The
FIRM [4] paper introduces an innovative application of
reinforcement learning specifically tailored for microser-
vice environments. Although distinct from serverless ar-
chitectures due to the presence of ’paths’ in microservices,
FIRM demonstrates the efficacy of reinforcement learning
as a robust resource management solution. This finding
suggests the adaptability of reinforcement learning across
different cloud computing paradigms and underscores its
potential superiority in resource optimization.

These contributions collectively highlight the evolv-
ing landscape of machine learning applications in re-
source management within cloud computing. While
Aquatope provides insights into predictive resource allo-
cation, FIRM extends the applicability of reinforcement
learning to microservices, thereby informing potential
strategies for enhancing resource management in server-
less environments. As we delve into our own exploration,
these studies offer valuable benchmarks and methodolo-
gies for consideration and potential integration into our re-
inforcement learning-based resource management model.

3 Approach

3.1 Quality of Service (QoS)

Quality of Service is a metric that is typically measured by
the latency of a function. When a function is called, there
is time that it takes to reach the server, execute, and send
the results back, which added together is the latency of that
function call. QoS will usually be a certain latency value
that, if exceeded, will violate the QoS. After the function
is called many times, the latencies can then be sorted and
plotted in a graph. While one aspect is to keep the median
latencies lower, the more important part is to try to limit

4000

3000

2000

number of requests

1000

400 800 1200
response time (ms)

Figure 1: Latencies gathered by running a function many
times. [6]

the length of the end or tail latencies. This is because the
QoS violations will first occur from those tail latencies, so
if there is a longer tail the probability of a violation will be
larger. Another common measurement for QoS is the 90th
or 99th percentile latencies. These are useful in order to
judge how long the tail is, and to estimate the percentage
of requests that will violate QoS.

Latency depends on a number of different factors. One
common issue is cold starting. When a function is de-
ployed for the first time, a new container needs to be setup
and receive the function. This usually takes a substan-
tial amount of time, so it is crucial to avoid cold starts
whenever possible. Usually, the container will retain the
function data for some amount of time after it is called, so
that if a new call is initiated it will already be loaded and
ready to run, leading to a quick execution. Another fac-
tor is the requests per second (rps) of the function. As the
rps increases, so will the latency. In some circumstances,
this occurs because of hardware limitations. In our case,
each machine has a queue of functions. If the functions
are being added to the queue faster than they are being ex-
ecuted and cleared from the queue, then it is clear that the
latencies of each function will rise as well.

3.2 Cloud and ML infrastructure

In this experiment we used Cloudlabs [1] and vHive [5] in
order to simulate our serverless environment. Cloudlabs
provides a cluster of virtual machines in order to deploy
the functions into containers. vHive is a serverless envi-
ronment simulator and what actually deploys the server-
less functions, and schedules them. In addition, we are us-
ing vSwarm [3], a collection of different serverless bench-
marks. For this paper, I have used the different functions
under the online-shop application. There are a total of 9
different functions, such as adservice and paymentservice,
and the goal is to simulate an online shopping website. We
then create an environment and API with kubernetes [2] so
that after the function is deployed, we can gather data such
as the latency values and the resource usage (cpu, memory

50th, 90th, 99th, and 99.9th percentile latency
Average idle, user, and system CPU cycles
Average free memory
Throughput (Requests per Second completed vs Requests per Second asked for)

Table 1: Metrics saved

DQN Implementation: Training

+ — = — —| Training Loop | - — — —

[Written by us

6. Return

state and

compute
reward

AR
Environment 9
API

2. Action(s)
A =Up/Down/0

Figure 2: One iteration for the network.

and network). These metrics are useful as they will be im-
portant for us to calculate the overall efficiency and QoS
when we test new scaling parameters.

Currently, we have written scripts in order to automate
the set-up process on Cloudlab and to create the proper en-
vironment. Because each cloudlab experiment only lasts
for a certain amount of time, it is actually very helpful
to automate this process. The setup script involves down-
loading vHive and vSwarm, and configuring each machine
properly.

Finally, there is a python function in order to run each
function. Normally, we would have to go into the mas-
ter node and create the invoker and run the function from
there, which would take a lot of time and manual labor.
With a python function, not only is it much faster, it can
be automated by a simple for loop. This is crucial because
when training or gathering data, it can take hours and run-
ning each function call manually is a lot of time.

3.3 Machine Learning Driven Autoscaling:

We applied machine learning-based autoscaling in a
serverless computing environment through the use of
Deep Q Learning. This approach allows for efficient
and dynamic scaling of resources to match varying work-
loads. The system learns and adapts in real-time, en-
hancing resource allocation based on observed patterns
and demands. This results in optimized performance and
cost-effectiveness, demonstrating the effectiveness of ma-
chine learning in managing cloud resources adaptively and
proactively.

Using our python APIs, we create a training loop as the
image shows. In each loop, we first send an action to be
deployed, such as adjusting the amount of CPU to allocate
or increasing/decreasing the number of container replicas.

CPU limit

Figure 3: CPU allocated at each step.

QoS

Figure 4: 90th percentile tail latency at each step.

Then we collect the results in the form of latency and re-
source utilization, and compile them into a state and a re-
ward for the DQN model to receive.

4 Evaluation

We implemented two DQN agents, one for vertical scaling
and one for horizontal scaling.

4.1 Vertical Scaling Results

For our vertical scaler, we found quite fast convergence.
The QoS latency (90th percentile) reached convergence
after around twenty 10 second steps, reaching around
1000-2000 microseconds. The reward similarly con-
verged, while the actions converged after around 10. The
reason for this delay between action convergence and re-
ward/QoS convergence could be because the containers
terminate/restart after each update, so when the actions
converge it takes some time for the results to show up. The
reward function also penalized high CPU usage, which is

Reward curve

Figure 5: Reward at each step.

why it did not scale infinitely. These patterns were also
similar for other RPS values as well as other functions.

5 Limitations & Future Work

5.1 Offline Learning

Currently, the RL agent’s performance suffers at the be-
ginning of training. One solution is to use the default
autoscaler until the RL agent has accumulated sufficient
experience to make good decisions. During this initial
phase, the default autoscaler would make scaling deci-
sions in the serverless environment; meanwhile, the RL
Agent will train its policy offline by sampling data col-
lected by the rule-based scaler. Eventually, the RL Agent’s
performance will equal or surpass that of the rule-based
scaler, at which point the RL Agent would be deployed
for online learning directly in the serverless environment,
as it is in the current implementation.

5.2 Multi-Tenancy

Our design accounts for the presence of multiple functions
running simultaneously in the serverless environment, and
the agent learns to scale optimally in these multi-tenant
situations. However, one of the limitations is that the to-
tal number of functions running in the serverless environ-
ment is predetermined and fixed, which limits its flexibil-
ity. Also, because the action space consists of all possi-
ble combinations of actions for each individual function,
its size grows exponentially with respect to the number of
functions present. To make the model more comprehen-
sive and adaptive to dynamic situations, a multi-agent de-
sign could be used. In a multi-agent RL system, each func-
tion would have its own agent, so changes in the number of
functions running would be addressed by the assignment
of either more or fewer agents.

5.3 Chained Functions

Some workloads, such as vSwarm’s video-analytics
benchmark, involve chained functions that are dependent

on one another. Our current design does not account for
chained functions. This is because each function in the
chain has its own optimal scaling configuration with re-
spect to its dependent functions; however, the RL Agent
in the current implementation cannot learn to optimize
quality-of-service because it does so by invoking individ-
ual functions separately. In future work, the inter-service
dependencies could potentially be modeled by using criti-
cal service localization, as described in FIRM.

6 Conclusion

In conclusion, our research endeavors involved the metic-
ulous construction of robust infrastructure, faithfully repli-
cating diverse serverless environments characterized by
varying workloads. This infrastructure served as the
testing ground for our innovative approach to resource
management, driven by the implementation of Deep Q-
Learning. By leveraging this data-driven methodology,
we addressed the intricate challenges posed by dynamic
serverless environments, aiming to optimize resource al-
location and enhance overall system performance.

Github link: https://github.com/barabanshek/
MIT_PRIMEs/tree/main

References

[1] Cloudlab. https://www.cloudlab.us/.

[2] Production-grade container orchestration. https://
kubernetes.io/.

(3]

vswarm - serverless benchmarking suite. https://
github.com/vhive-serverless/vSwarm.

[4] QIU, H., BANERIEE, S. S., JHA, S., KALBARCZYK,
Z. T., AND IYER, R. K. FIRM: An intelligent fine-
grained resource management framework for SLO-
Oriented microservices. In [4th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 20) (Nov. 2020), USENIX Association,

pp- 805-825.

[5] UstiuGgov, D., PETROV, P., KOGIAS, M.,
BUGNION, E., AND GROT, B. Benchmarking, analy-
sis, and optimization of serverless function snapshots.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (New York, NY, USA,
2021), ASPLOS ’21, Association for Computing Ma-

chinery, p. 559-572.
(6]
(7]

VITILLO, R. Why you should measure tail latencies.

ZHOU, Z., ZHANG, Y., AND DELIMITROU, C.
Aquatope: Qos-and-uncertainty-aware resource man-
agement for multi-stage serverless workflows. In

https://github.com/barabanshek/MIT_PRIMEs/tree/main
https://github.com/barabanshek/MIT_PRIMEs/tree/main
https://www.cloudlab.us/
https://kubernetes.io/
https://kubernetes.io/
https://github.com/vhive-serverless/vSwarm
https://github.com/vhive-serverless/vSwarm

Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 1 (New York,
NY, USA, 2022), ASPLOS 2023, Association for
Computing Machinery, p. 1-14.

	Introduction
	Related Work
	Approach
	Quality of Service (QoS)
	Cloud and ML infrastructure
	Machine Learning Driven Autoscaling:

	Evaluation
	Vertical Scaling Results

	Limitations & Future Work
	Offline Learning
	Multi-Tenancy
	Chained Functions

	Conclusion

