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» Background
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What is machine learning?
What is CIFAR-10?

What is differential privacy?

How is differential privacy currently
used in machine learning?

How is our method different?



» What is Machine Learning?

g% Machine Learning models learn by being shown instead of told
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Left - a representation of
a machine learning model
with 3 inputs and 1
output. Each node has a
value, which is calculated
by taking a weighted
average of the nodes in
the previous layer.



» What is Machine Learning?

Machine learning models calculate
the slope of the gradient at their

current point, then move in the
direction with the greatest
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» Whatis CIFAR-10?

@ A common machine learning benchmark that asks models to
sort images into 10 categories

Advantages: R
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Some images from CIFAR-10



» What is Differential Privacy?
—

Database A
without your data

——p Function output A

£~ Output Aand A’
are similar

Database A’
with your data

=) Function output A’

O\ Differential privacy guarantees that a small change in input (e.g.
one less datapoint) will only lead to a bounded change in output.



» Differential Privacy

20

cheaters

100 students

yall



» Anonymization Falls Short

20

cheaters

If you know the summary
statistic and the other 99
students, you can figure out
whether or not | cheated easily

yall



» Differential Privacy Works

Even if you know about everyone else, you ﬂ

can’t know (or even have a good guess)
N 1 whether the difference was caused by my
response or just random noise
cheaters

= ~21

Real statistic + random noise = published “statistic”
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» Differential Privacy in Machine Learning

Differentially

Private = ﬂ
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» Differential Privacy in Machine Learning

Accuracy loss from:

Adding random noise
Gradient clipping

More clipping = less noise needed

Without clipping

J(w,b)

With clipping

J(w.b)




» A New Method

Adding noise to the model after training!

Advantages

Avoids gradient clipping
entirely

Allows us to add noise once at
the end of training, instead of
every batch

@D
Disadvantages

Relatively new, little prior work
done on optimization

No easy way to create stability
guarantee, empirical
estimations don’t create
privacy guarantees



» Methods
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Constants

e Model selection
e Stability calculation

0%

Experiments

Full-Batch gradient and Pretraining
Layer Freezing

Pruning and Gradient Clipping
Tree-net

Linear regressions for post-training
privatization

e
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» Model selection

e ECNN
e VGG 19

e Resnet 20
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» Empirical Model Stability Calculation

@ Two Main Methods

e L2 norm
e Square root sum of eigenvalues

e Models are trials



» Full-Batch Gradient and Pretra

fference?

What’s the d
te randomness

Full gradient

SGD vs.
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» Results For Baseline

e For small CNN, |2 norm of deviation
is 0.007 for baseline

e We test with a “public” and
“private” simulation, using a 5k
pretrain and 25k samples

e We use this to test full batch
gradient vs. SGD for the resnet20

e We aim to find balance between
stability and accuracy
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Fig 1: divergence (2 norm over 50 epochs for full batch
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Fig 2: divergence |2 norm over 50 epochs for small batch




» Layer Freezing

e Extension of Baseline, how is accuracy/stability affected if only last
layers are trained

e How many layers do we need to freeze?

e Results oriented around noise addition and resistance to addition

e Deviation from pretrained model: 0.4%
e Accuracy loss from noise: 0.3%
e Accuracy increase: 1-2%




» Pruning

er

runin

yall



» Pruning and Gradient Clipping

e Pruning nodes with low L1 norm reduces clutter

e Gradient clipping prevents large gradients from creating
largely different models

e Combine for most important features with no extremes

Without clipping With clipping

Pruning the pretrained model:
ﬂ e L2 norm deviation: 55%
e Accuracy: 15% increase

Clipping: S 0=
Q\ e L2 norm deviation: 20% \/

e Accuracy: 13% increase b b




» Tree-net Structure
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» Tree-net Results
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Three models compared: resnet20, one layer tree-net, full tree-net

Similar accuracies of ~70%
Full tree-net more resistant to noise
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Fig 3:Accuracy graphs of Resnet20, One layer, and Tree-net

10.0

125

15.0 17.5




I
e
» Linear regressions (Ongoing)

Linear regressions function as a proof of concept: simpler models that are
easier to create and run tests on.

Two different (but similar) types:
e A single-layer neural network, trained with SGD.
e A linear regression fit with least-squares to the whole train set.

Trained on a small fraction of the 50,000 sample train set several times,
then compared to itself to empirically measure stability.



» Linear regressions (Ongoing)

We found that data preprocessing increases both
accuracy and stability in linear regressions.

Pretrained Li
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» Any Questions?

Gradients for
each example Privatised

gradient
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update model
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Before pruning

After pruning
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