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How does cloud computing work?
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What is serverless?

Traditional cloud computing Serverless computing




Serverless in Production
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A Challenge of Serverless

Resource Management



Quality of Service (QoS)

Imagine you are a serverless user who sends some functions to a provider. What
do you care about?
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Resource Management - A Balancing Act

Quality of Service
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How is resource management done in production?

naive!

Autoscalers!

]

Autoscaler Logic:

if (cpu util per container > 250m):
scale_up()

else:
scale_down ()

if (mem util per container > 256 MiB):
scale up()

else:
scale down()




Intelligent Scaling

Data-driven
scaling system!

Use an ML model instead!
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The problem with traditional ML
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Reinforcement
Learning!



A Primer on Reinforcement Learning (RL)

Reinforcement learning can be thought of as a loop between the environment and
the agent

State & Reward

Actions




RL: Learning through experience

1st time seeing a 5th time seeing a
Goomba Goomba

500th time seeing a
Goomba
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RL (Q-Learning) for Resource Management
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Deep Q-Learning for Resource Management
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Challenges in a serverless environment
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Reusing previous experiences with a replay buffer
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System Implementation
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A Real Serverless Environment
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DQN Implementation: Each Episode

[] Written by us
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DQN Implementation: Training
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Results - Horizontal Pod Autoscaling
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Results - Vertical Pod Autoscaling
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Contributions and Artifacts

1. We constructed proper infrastructure to replicate
serverless environments with different workloads.

2. We implemented Deep Q-Learning as a data-driven
way to tackle resource management in dynamic
serverless environments.

3. Github can be found here
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