Exploring Data-driven Approaches

to Resource Management in Serverless
Systems

Alan Song and Evan Ning (PRIMES CS)

Mentors:
Nikita Lazarev

Varun Gohil PRIMES Fall Conference: October 15, 2023

Is Cloud Computing?

What

ofS

Ap

How does cloud computing work?

N\
/ Actual application

n How to run the
\ @ application/what is
needed

GUIDE
How many resources to
/ give to the container

What is serverless?

Traditional cloud computing Serverless computing

Serverless in Production

Since 2014... o
‘I L Google

AWS Lambda Cloud
5/,

Funcﬂons

IBM Cloud
Functions

'« Azure
<> Functions

A Challenge of Serverless

Resource Management

Quality of Service (QoS)

Imagine you are a serverless user who sends some functions to a provider. What
do you care about?

ninkad33 Tail Latency

Fine! omsh Terrible

|‘|| ||||III....'.I--
u w e

wow JO bR U L) 1

‘& 78/0

97.8%0 requests are faster than 3 m

Throughput: how many
Latency: how quickly? per second?
(milli/micro)seconds Requests Per Second (RPS)

Resource Management - A Balancing Act

Quality of Service

anNANN

B

Vertical Scaling Horizontal Scaling
(Scaling up) (Scaling out)

How is resource management done in production?

naive!

Autoscalers!

]

Autoscaler Logic:

if (cpu util per container > 250m):
scale_up()

else:
scale_down ()

if (mem util per container > 256 MiB):
scale up()

else:
scale down()

Intelligent Scaling

Data-driven
scaling system!

Use an ML model instead!

10

The problem with traditional ML

(= PROCESSOR
QJ Load: 285

Inel) Core™ 510500 CPU @ 3.106Hz Eve ryth i ng

Hide details .

Overal Lo 2% I— keeps changing!
U0-HT6 154 ™0

CPU1-HT?
CPU2-HT8
CPU3-HT9

0%
1%
0%
2%
0%

CPU4-HT 10

CPUS-HT 11

1

Reinforcement
Learning!

A Primer on Reinforcement Learning (RL)

Reinforcement learning can be thought of as a loop between the environment and
the agent

State & Reward

Actions

RL: Learning through experience

1st time seeing a 5th time seeing a
Goomba Goomba

500th time seeing a
Goomba

14

RL (Q-Learning) for Resource Management

Reward Reward function

' / (based on QoS metrics)

Action (scaling)

e,lc Invoke an

ect QoS metrics (tail latency)

B

Q=0.88

| |+

Q=0.1B

=) .

-
Environment
(Cloud)

State (QoS requirements, resource usages,
current # of containers)

Q-Table Agent TS ~.
(scaler)
e p -

trics

15

Deep Q-Learning for Resource Management

Reward Reward function

: | j (based on QoS metrics)

Action (scaling)

¢)
. &- Read met ail latency)
_ Q=0.13 i —‘

n —— ~ ~ <
mﬁ(Agent Sso o S. Re e Environment
(scaler) RN ' (Cloud)
N N
L State (resource usages,

current # of containers)

O
I
o
o
W

16

Challenges in a serverless environment

Reward Reward function

/ (based on QoS metrics)
Action (scaling) -I-.-I-I.

Read me ail latency)
Functions are
running...
i o . |
=P —

\

Agent
(scaler)
e p -

AT Environment (containers)

State (resource usages,
current # of containers)

17

Reusing previous experiences with a replay buffer

S

177272

21373

<sar S

V
<sars>1
______/

<sars>2

17Tt

>P

Reward Reward function

' / (based on QoS metrics)

Action (scaling)

Invoke an ect QoS metrics (tail latency)

| @velooActon1

Deep Q
Network

Environment
(Cloud)

State (QoS requirements, resource usages,
current # of containers)

trics

\p,.

18

System Implementation

mmmmmmm

;‘ X -

A Real Serverless Environment

O

Prometheus kubernetes

CleudlLab

hotel-app

fibonacci-python

20

DQN Implementation: Each Episode

[] Written by us

Client (main)

>

2. Get initial
environment state

1. Deploy
functions

3.
Initialize
DQN

4

_—— _—— —_— —_— _— _— _— _— _— _—
|
|

Training Loop

DQN
Q

qp

7\

~

——_—_—_—_—_—_—_H

DQN Implementation: Training

DQN
25 o
Initialize |
DaN Ial

API Gateway

[] Written by us

Client (main)

Any Model!

e 1. Deploy
2.' Get initial Retans
environment state

CloudLab Node

——00] ==00 R
=i = 6. Return
> = 1. Action(s) state and
e e e o e e e e e e, e, e e e T T LT e e e == A = Up/Down/0
r compute
\ 5. compile reward

4. return metrics env state and

and latencies \ latencies
y

Actuator) Environment
J 2. Action(s)
API API

3. Scale
functions and
invoke

A = Up/Down/0

22

+ — — — —| Trainingloop |- — — —

Results - Horizontal Pod Autoscaling

5e+6
3 set6
O 3et+6
C
D 2ev6
M
—J 1let6

0

Horizontal Scaling

(Scaling out)

Latency as

— 99th tail
— 90th tail
— median

S_Q .

100

Reward

of containers

Reward curve

0.5

. M

I
0.5 |
1 I Step
0 |20 40 60 80 100
[
I Number of containers
I function #1

30
l function #2

function #3

20

10

Step

’ oStOp léarning! 40 60 80 100

23

Results - Vertical Pod Autoscaling

let+7

8e+6

6e+6

4e+6

2e+6

Microsecond |

10

QoS

Vertical Scaling

(Scaling up)

Around
1000-2000 siep

20

25

Reward curve

4
2
0 /\ M
2 j \/
Step
0 5 10 15 20 25
CPU limit

250

0

I

o

2
200 =

£
150
100
50

Ste
0 P
0 5 10 15 20 25

24

Contributions and Artifacts

1. We constructed proper infrastructure to replicate
serverless environments with different workloads.

2. We implemented Deep Q-Learning as a data-driven
way to tackle resource management in dynamic
serverless environments.

3. Github can be found here

Acknowledgments

e Nikita, Varun, Lisa

e Families

e Shoutout to CloudLab!
e PRIMES

