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Definition (Circulant Matrix)

A (classical) circulant matrix is a square matrix where every row
is the same as the previous one, but shifted to the left by one unit
(with wrap-around).

Example

1 2 3
2 3 1
3 1 2



1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


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General form of a circulant matrix:
c0 c1 c2 · · · cn−1

c1 c2 c3 · · · c0
c2 c3 c4 · · · c1
...

...
...

. . .
...

cn−1 c0 c1 · · · cn−2


Each of the ci s appears exactly once in every row and column.
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Circulant matrices are useful in many areas.

Signal processing

Discrete Fourier Transform

What are their ranks? When are they invertible?

Example

rank

1 2 3
2 3 1
3 1 2

 = 3 rank



1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 = 2

We’ll actually answer these questions for a larger family of
matrices: group-circulants.
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Circulant matrices are a special example of a larger class of
matrices, called group-circulant matrices.

Definition (Group-Circulant Matrix)

Given a finite group G , a ring Λ, and a function f : G → Λ, a
G -circulant matrix of f is a |G | × |G | matrix M with rows and
columns indexed by the elements of G , such that Mx ,y = f (xy) for
all x , y ∈ G .
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Classical circulant matrices are Z/nZ-circulant matrices.



0 1 2 ··· n−1

0 f (0) f (1) f (2) · · · f (n − 1)
1 f (1) f (2) f (3) · · · f (0)
2 f (2) f (3) f (4) · · · f (1)
...

...
...

...
. . .

...
n−1 f (n − 1) f (0) f (1) · · · f (n − 2)


If we let f (i) = ci for i = 0, 1, . . . , n − 1, we get the general form
for a circulant.
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Take G = K4 := {e, x , y , xy}, where xy = yx and x2 = y2 = e.


e x y xy

e f (e) f (x) f (y) f (xy)
x f (x) f (e) f (xy) f (y)
y f (y) f (xy) f (e) f (x)
xy f (xy) f (y) f (x) f (e)


f : G → R satisfies f (e) = 1, f (x) = 2, f (y) = 3, f (xy) = 4.


e x y xy

e 1 2 3 4
x 2 1 4 3
y 3 4 1 2
xy 4 3 2 1


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Take G = K4 := {e, x , y , xy}, where xy = yx and x2 = y2 = e.


e x y xy

e f (e) f (x) f (y) f (xy)
x f (x) f (e) f (xy) f (y)
y f (y) f (xy) f (e) f (x)
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
f : G → R satisfies f (e) = 1, f (x) = 2, f (y) = 3, f (xy) = 4.

rank



1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1


 = 3

What are the ranks of group-circulants?
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Theorem (Group-Circulant Rank)

For any group G , good field Λ, and function f : G → Λ, express f
in the form

f (x) =
∑
ρ

 ∑
1≤i,j≤deg ρ

cρ,i,jρi,j(x)


where ρ runs over irreducible representations of G, the functions
ρi ,j are the matrix coefficients of ρ, and cρ,i ,j ∈ Λ. Then, the rank
of the G-circulant corresponding to f equals

∑
ρ

(deg ρ) rank


cρ,1,1 cρ,1,2 · · · cρ,1,N
cρ,2,1 cρ,2,2 · · · cρ,2,N
...

...
. . .

...
cρ,N,1 cρ,N,2 · · · cρ,N,N



 .

Michael Yang Lakeside School
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How do we read the theorem?

For any group G and good field Λ, the matrix coefficients
form a basis for the vector space of functions from G to Λ.

This basis is well-studied and nice to work with.

The theorem notes that when we write f as a sum of the
matrix coefficients, the rank of the G -circulant can be
deduced from the coefficients in that sum.

While this theorem was known to Diaconis, we gave a new, more
elementary proof.

Michael Yang Lakeside School
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When we take G = Z/nZ in the theorem, we get the following
result on the rank of classical circulant matrices:

Corollary (Circulant Rank)

Let ω = e2πi/n. The rank of the n × n circulant matrix with first
row [c0, c1, . . . , cn−1] is the number of nonzero entries in the vector

a0
a1
...

an−1

 =


1 1 1 · · · 1

1 ω−1 ω−2 · · · ω−(n−1)

...
...

...
. . .

...

1 ω−(n−1) ω−(2n−2) · · · ω−(n−1)2




c0
c1
...

cn−1

 .

Vanishing sums of roots of unity =⇒ singular circulants
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Definition (Matrix Rigidity)

Fix a square matrix M. The rank-r rigidity of M, denoted RM(r),
is the minimum number of entries one needs to change in M to
decrease its rank to at most r .

Example

For the n × n identity matrix In,

RIn(r) = n − r .

We can change n − r of the diagonal 1s to 0s to make the rank r .

Michael Yang Lakeside School

Rank and Rigidity of Group-Circulant Matrices



Outline Circulant Matrices Group-Circulant Matrices Matrix Rigidity Acknowledgements References

Definition (Matrix Rigidity)

Fix a square matrix M. The rank-r rigidity of M, denoted RM(r),
is the minimum number of entries one needs to change in M to
decrease its rank to at most r .

Example

For the n × n identity matrix In,

RIn(r) = n − r .

We can change n − r of the diagonal 1s to 0s to make the rank r .

Michael Yang Lakeside School

Rank and Rigidity of Group-Circulant Matrices



Outline Circulant Matrices Group-Circulant Matrices Matrix Rigidity Acknowledgements References

Example

Let

I3 =

1 0 0
0 1 0
0 0 1

 .

Then, RI3(1) = 2.

1 0 0
0 1 0
0 0 1

 −→

1 0 0
0 0 0
0 0 0



Michael Yang Lakeside School
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Example

Let

M =

2 3 5
1 0 1
4 6 7

 .

Then, RM(1) = 3.

2 3 5
1 0 1
4 6 7

 −→

2 3 5
1 3/2 5/2
4 6 10


Changing any two entries will leave a 2× 2 rectangle of full rank
unchanged.
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Theorem (Valiant 1977)

If M is a Valiant-rigid N × N matrix, then the linear map
corresponding to M cannot be computed by circuits of size O(N)
and depth O(logN).

Valiant-rigid matrices are highly rigid.

Goal: find an explicit Valiant-rigid matrix.

Not rigid:

Super-regular matrices

Walsh-Hadamard transform
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Theorem (Dvir–Liu 2019)

Let G be an abelian group. The family of G-circulant matrices is
not Valiant-rigid over any field of characteristic relatively prime to
|G |.

Theorem (Trinh–Y. 2023)

For groups G with relatively large abelian normal subgroups, the
family of G-circulant matrices is not Valiant-rigid.
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