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Rings

Definition
A ring is a set 𝑅 with binary operations + and ⋅ such that:

▶ (𝑅, +) is an abelian group (so addition is commutative,
associative, has an identity, and all elements have additive
inverses).

▶ Multiplication is associative and has an identity.
▶ Multiplication is distributive with respect to addition,

namely (𝑎 + 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑅.

𝑅 is a commutative ring if multiplication is commutative.

Examples
Commutative rings we frequently work with include Z, Z/𝑛Z,
and Z𝑝.
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Modules

Definition
A module over a commutative ring 𝑅 is an abelian group
(𝑀, +) along with an operation (⋅) ∶ 𝑅 × 𝑀 → 𝑀 such that for
all 𝑟, 𝑠 ∈ 𝑅 and 𝑚, 𝑛 ∈ 𝑀 ,

▶ (𝑟 + 𝑠) ⋅ 𝑚 = 𝑟 ⋅ 𝑚 + 𝑠 ⋅ 𝑚,
▶ 𝑟 ⋅ (𝑚 + 𝑛) = 𝑟 ⋅ 𝑚 + 𝑟 ⋅ 𝑛,
▶ (𝑟𝑠) ⋅ 𝑚 = 𝑟 ⋅ (𝑠 ⋅ 𝑚),
▶ 1 ⋅ 𝑚 = 𝑚.

Modules generalize vector spaces from fields to arbitrary rings.

Examples
Modules over Z include Z3, (Z/9Z)2, and Z/9Z ⊕ Z/3Z.
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The image and cokernel of a matrix

Definition
Let 𝑀 be an 𝑛 × 𝑛 matrix over a commutative ring 𝑅. The
image of 𝑀 is the 𝑅-module

im 𝑀 = {𝑀𝑣 ∶ 𝑣 ∈ 𝑅𝑛}.

The cokernel of 𝑀 is the quotient module

cok 𝑀 = 𝑅𝑛/ im 𝑀.
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The image and cokernel of a matrix

Example
The matrix

𝑀 = [1 0
0 3]

over the commutative ring Z/9Z has image

im 𝑀 ≃ Z/9Z ⊕ Z/3Z

and cokernel
cok 𝑀 ≃ Z/3Z.
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Principal ideal domains (PID)

Definition
An ideal of a ring (𝑅, +, ⋅) is a subset 𝐼 ⊆ 𝑅 that is closed
under addition and under multiplication by elements of 𝑅.

Example
Ideals of Z are of the form 𝑛Z for some integer 𝑛.

Definition
An integral domain is a nontrivial commutative ring 𝑅 in which
𝑎𝑏 ≠ 0 for any nonzero 𝑎, 𝑏 ∈ 𝑅. A principal ideal domain (PID)
is an integral domain in which every ideal can be generated by
an element.

Examples
Z and Z/𝑝Z are PIDs. Z/𝑝2Z is not a PID because it is not an
integral domain.
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Finitely generated modules over a PID

Theorem (structural theorem)
If 𝑀 is a finitely generated module over a PID 𝑅, then there
exist a unique nonnegative integer 𝑟 and nonzero non-unit
elements 𝑎1, … , 𝑎𝑛 ∈ 𝑅 such that 𝑎1 ∣ ⋯ ∣ 𝑎𝑛 and

𝑀 ≃ 𝑅𝑟 ⊕
𝑛

⨁
𝑖=1

𝑅/𝑎𝑖𝑅.

The elements 𝑎1, … , 𝑎𝑛 are unique up to multiplication by a
constant. They are called the invariant factors of 𝑀 .
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𝑝-adic integers

Definition
Let 𝑝 be a prime. A 𝑝-adic integer is an infinite sequence
𝑎 = (𝑎1, 𝑎2, 𝑎3, … ) of residues 𝑎𝑖 ∈ Z/𝑝𝑖Z satisfying 𝑎𝑖 ≡ 𝑎𝑗
(mod 𝑝𝑖) for all 𝑖 < 𝑗. The set Z𝑝 of 𝑝-adic integers forms a
commutative ring under elementwise addition and
multiplication over their respective rings Z/𝑝𝑖Z. The ring of
integers is embedded in Z𝑝 through the monomorphism

𝑛 ↦ (𝑛 mod 𝑝, 𝑛 mod 𝑝2, 𝑛 mod 𝑝3, … ).

We identify the quotient ring Z𝑝/𝑝𝑘Z𝑝 with Z/𝑝𝑘Z as they are
isomorphic.
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Torsion modules

Definition
A module 𝑀 is a torsion module if for all 𝑚 ∈ 𝑀 , there exists a
nonzero element 𝑟 ∈ 𝑅 such that 𝑟 ⋅ 𝑚 = 0.

In particular, if 𝑀 is finitely generated and 𝑅 is a PID, the
exponent 𝑟 of 𝑅 in the product decomposition of 𝑀 is zero.

Examples
The module Z/9Z ⊕ Z/3Z over Z is a torsion module. The
module Z3 over Z is not a torsion module.
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Finitely generated torsion modules over Z𝑝

Theorem (structural theorem)
Every finitely generated torsion module 𝑀 over Z𝑝 admits a
product decomposition

𝑀 ≃
𝑛

⨁
𝑖=1

Z/𝑝𝑒𝑖Z,

for some and positive integers 𝑒1 ≥ ⋯ ≥ 𝑒𝑛.

A finitely generated module 𝑀 over Z/𝑝𝑘Z ≃ Z𝑝/𝑝𝑘Z𝑝 can be
viewed as a finitely generated torsion module over Z𝑝 whose
product decomposition satisfies 𝑒1 ≤ 𝑘.
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Partitions

Definition
A partition

𝜆 = (𝜆1, … , 𝜆𝑟)
is a finite sequence of positive integers 𝜆1 ≥ ⋯ ≥ 𝜆𝑟 called the
parts of 𝜆. We define

|𝜆| =
𝑟

∑
𝑖=1

𝜆𝑖 and 𝑛(𝜆) =
𝑟

∑
𝑖=1

(𝑖 − 1)𝜆𝑖.

We define the type of a finitely generated torsion module

𝑀 ≃
𝑛

⨁
𝑖=1

Z/𝑝𝑒𝑖Z

over Z𝑝 to be the partition (𝑒1, … , 𝑒𝑛), where 𝑒1 ≥ ⋯ ≥ 𝑒𝑛.
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Additive Haar measure on Z𝑝

Definition
Let Σ be the 𝜎-algebra on Z𝑝 generated by subsets of the form
𝑎 + 𝑝𝑘Z𝑝 where 𝑘 is a positive integer and 𝑎 ∈ Z𝑝. The additive
Haar measure 𝜇∶ Σ → [0, 1] is defined by

𝜇(𝑎 + 𝑝𝑘Z𝑝) = 𝑝−𝑘

for all aforementioned subsets 𝑎 + 𝑝𝑘Z𝑝.

If 𝑎 is a random 𝑝-adic integer selected with respect to additive
Haar measure, then its residue 𝑎 mod 𝑝𝑘 is uniformly
distributed in Z/𝑝𝑘Z.
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Definition
Let Σ be the 𝜎-algebra on Z𝑝 generated by subsets of the form
𝑎 + 𝑝𝑘Z𝑝 where 𝑘 is a positive integer and 𝑎 ∈ Z𝑝. The additive
Haar measure 𝜇∶ Σ → [0, 1] is defined by

𝜇(𝑎 + 𝑝𝑘Z𝑝) = 𝑝−𝑘

for all aforementioned subsets 𝑎 + 𝑝𝑘Z𝑝.
If 𝑎 is a random 𝑝-adic integer selected with respect to additive
Haar measure, then its residue 𝑎 mod 𝑝𝑘 is uniformly
distributed in Z/𝑝𝑘Z.
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Notation

From now on, we use
▶ M𝑛(𝑅) to denote the ring of 𝑛 × 𝑛 matrices over the

commutative ring 𝑅;
▶ Sym𝑛(𝑅) to denote the ring of 𝑛 × 𝑛 symmetric matrices

over the commutative ring 𝑅; and
▶ Alt𝑛(𝑅) to denote the ring of 𝑛 × 𝑛 alternate matrices over

the commutative ring 𝑅.

For any nonnegative integer 𝑚 and positive integer 𝑞, we write

𝜙𝑚(𝑞) =
𝑚

∏
𝑗=1

(1 − 𝑞−𝑗) and 𝜓𝑚(𝑞) =
⌊𝑚/2⌋
∏
𝑗=1

(1 − 𝑞−2𝑗).
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𝜙𝑚(𝑞) =
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Cokernel distribution of matrices over Z𝑝

In 1989, Friedman and Washington studied the distribution of
the cokernel of a random matrix selected from M𝑛(Z𝑝).
Theorem (Friedman–Washington, 1989)
Suppose that 𝐺 is a finitely generated torsion module over Z𝑝.
For a random matrix 𝑋 selected from M𝑛(Z𝑝) with respect to
additive Haar measure, the probability that cok(𝑋) ≃ 𝐺 is

𝑃𝑛(𝐺) = 1
|Aut(𝐺)|

𝜙𝑛(𝑝)2

𝜙𝑛−𝑟(𝑝) ,

where 𝑟 = dimF𝑝
(𝐺/𝑝𝐺).
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Cokernel distribution of matrices over Z/𝑝𝑘Z

Friedman and Washington also fixed some matrix
𝑋̄ ∈ M𝑛(Z/𝑝Z) and counted the matrices in M𝑛(Z/𝑝𝑘Z) with
the given cokernel 𝐺 whose residue modulo 𝑝 is 𝑋̄. Cheong,
Liang, and Strand refined their result.

Theorem (Cheong–Liang–Strand, 2023)
Suppose that 𝐺 is a finitely generated module over Z/𝑝𝑘Z. For
any 𝑋̄ ∈ M𝑛(Z/𝑝Z) such that cok(𝑋̄) ≃ 𝐺/𝑝𝐺,

#
⎧{
⎨{⎩

𝑋 ∈ M𝑛(Z/𝑝𝑘Z) ∶
cok(𝑋) ≃ 𝐺

and 𝑋 ≡ 𝑋̄ (mod 𝑝)

⎫}
⎬}⎭

= 𝑝(𝑘−1)𝑛2+𝑟2

|Aut(𝐺)|
𝜙𝑟(𝑝)2

𝜙𝑢(𝑝) ,

where 𝑟 = dimF𝑝
(𝐺/𝑝𝐺) and 𝑢 = dimF𝑝

(𝑝𝑘−1𝐺).
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Cokernel distribution of families of matrices over Z𝑝

In 2015, Clancy, Kaplan, Leake, Payne, and Wood determined
the distribution of the cokernel of a random 𝑛 × 𝑛 symmetric
matrix over Z𝑝.
Also in 2015, Bhargava, Kane, Lenstra, Poonen, and Rains
determined the distribution of the cokernel of a random 𝑛 × 𝑛
alternating matrix over Z𝑝.
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Cokernel distribution of symmetric matrices over Z𝑝
The following result follows from the work of Clancy, Kaplan,
Leake, Payne, and Wood in 2015.

Theorem (Fulman–Kaplan, 2019)
Suppose that 𝐺 is a finitely generated torsion module over Z𝑝
with the product decomposition

𝐺 ≃
𝑠

⨁
𝑖=1

(Z/𝑝𝑒𝑖Z)𝑟𝑖

and type 𝜆 = (𝜆1, … , 𝜆𝑟). For a random matrix 𝑋 selected from
Sym𝑛(Z𝑝) with respect to additive Haar measure, the probability
that cok(𝑋) ≃ 𝐺 is

𝑃 Sym
𝑛 (𝜆) = 𝑝−𝑛(𝜆)−|𝜆| 𝜙𝑛(𝑝)

𝜓𝑛−𝑟(𝑝)
𝑠

∏
𝑖=1

1
𝜓𝑟𝑖

(𝑝) .
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Cokernel distribution of symmetric matrices over Z/𝑝𝑘Z

We refined the result of Fulman and Kaplan by considering
matrices whose residue modulo 𝑝 is some fixed matrix
𝑋̄ ∈ Sym𝑛(Z/𝑝Z).
Theorem (Das–Qiu–Zhang, 2023)
Let 𝐺 ≃ ⨁𝑠

𝑖=1(Z/𝑝𝑒𝑖Z)𝑟𝑖 be a finitely generated module over
Z/𝑝𝑘Z. For any 𝑋̄ ∈ Sym𝑛(Z/𝑝Z) such that cok(𝑋̄) ≃ 𝐺/𝑝𝐺,
the number of matrices 𝑋 over Sym𝑛(Z/𝑝𝑘Z) such that
cok(𝑋) ≃ 𝐺 and 𝑋 ≡ 𝑋̄ (mod 𝑝) is

√𝑝(𝑘−1)𝑛(𝑛+1)+𝑟(𝑟+1)

|𝐺||Aut(𝐺)|
𝜙𝑟(𝑝)𝜓𝑢(𝑝)

𝜙𝑢(𝑝)
𝑠

∏
𝑖=1

√𝜙𝑟𝑖
(𝑝)

𝜓𝑟𝑖
(𝑝)

where 𝑟 = dimF𝑝
(𝐺/𝑝𝐺) and 𝑢 = dimF𝑝

(𝑝𝑘−1𝐺).
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Cokernel distribution of symmetric matrices over Z/𝑝𝑘Z

In 2017, Wood showed a strong universality result for the
distribution of the cokernel of a random 𝑛 × 𝑛 symmetric
matrix as 𝑛 → ∞, namely that the distribution follows a
variant of the Cohen–Lenstra heuristics as long as the random
symmetric matrix 𝑋 comes from choosing each entry 𝑋𝑖𝑗
(𝑖 ≤ 𝑗) independently from an 𝜖-balanced distribution.

We show that the cokernel distribution still follows a variant of
the Cohen–Lenstra heuristics when we restrict to symmetric
matrices with a fixed residue modulo 𝑝.
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Cokernel distribution of alternate matrices over Z/𝑝𝑘Z

Definition
A square matrix 𝐴 over a commutative ring 𝑅 is alternate (or
skew-symmetric) if 𝐴⊤ = −𝐴 and all diagonal entries of 𝐴 are
zero.

Theorem (Das–Qiu–Zhang, 2023)
Let 𝐺 ≃ ⨁𝑠

𝑖=1(Z/𝑝𝑒𝑖Z)𝑟𝑖 be a finitely generated module over
Z/𝑝𝑘Z where all 𝑟𝑖 are even. For any 𝑋̄ ∈ Alt𝑛(Z/𝑝Z) such
that cok(𝑋̄) ≃ 𝐺/𝑝𝐺, the number of matrices 𝑋 over
Alt𝑛(Z/𝑝𝑘Z) such that cok(𝑋) ≃ 𝐺 and 𝑋 ≡ 𝑋̄ (mod 𝑝) is

√𝑝(𝑘−1)𝑛(𝑛−1)+𝑟(𝑟−1)|𝐺|
|Aut(𝐺)|

𝜙𝑟(𝑝)𝜓𝑢(𝑝)
𝜙𝑢(𝑝)

𝑠
∏
𝑖=1

√𝜙𝑟𝑖
(𝑝)

𝜓𝑟𝑖
(𝑝)

where 𝑟 = dimF𝑝
(𝐺/𝑝𝐺) and 𝑢 = dimF𝑝

(𝑝𝑘−1𝐺).
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Cokernel distribution of alternate matrices over Z/𝑝𝑘Z
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