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Question
What is the expected number of cars placed at saturation?
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Let M(L) be the expected number of cars on a length-L road.
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Step 2: Use Laplace transforms.



Rényi Parking Process

Theorem (Rényi, 1958)
In the Rényi Parking Process, as L — oo

M(L) ~ Cg - L,

u

where C = 5~ exp (=2 Jy 16~ du) dt ~ 0.747598.



Rényi Parking Process

M(L) plotted with L:
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Random Sequential Adsorption

Random Sequential Adsorption (RSA) refers to processes in which
1-dimensional cars are parked onto a road.
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We have n different types of cars with lengths (1 < 0, < --- < ¢,
and probabilities g1, g2, ..., gp.



Multidisperse RSA

We have n different types of cars with lengths 1 < 0 < --- < £,
and probabilities g1, g2, ..., gp.

» Subashiev and Luryi (2007) characterized lim; w in the
n = 2 case.

» We characterize lim;_ @ in the general n > 3 case.



Multidisperse RSA Example
When ¢1 = 1,0, =1.3,¢3 = 1.5 with gt =0.5,¢g> = 0.3,g3 = 0.2,

lim M ~ 0.778.
L—oo L
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General Length Distributions

Let 41 : [1,00) — R>? be a function representing a distribution of
lengths (ldf).

Take a road of length L and truncate u below L. We draw lengths
from this truncated pu.

eg. pu(f)=1.
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General Length Distributions

A length distribution is convergent if

/100 1(0) dé < oo.

e.g. u(¢) = e~ is convergent.
e.g. u(¢) =1 is divergent.

On a length-L road, convergent distributions weight small cars
more, whereas divergent distributions weight large cars more.

Question
Given an length distribution p, how does M(L) behave?
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Theorem
When 1 is convergent, then under mild conditions® then there is
a < 1 with
M(L) ~ aL.
e.g. p(l) =1
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Divergent LDF

Theorem
When p is divergent, then under mild conditions,?

M(L) = L — o(L).

2We require that there exists € > 0 such that for sufficiently large L,
[re-zZ@)de<(1—e)- [FL.Zz()ae,
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Divergent LDF

Theorem
When p is divergent, then under mild conditions,?

M(L) = L — o(L).

e.g. pu(l) =797
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2We require that there exists € > 0 such that for sufficiently large L,
[re-zZ@)de<(1—e)- [FL.Zz()ae,



Conjectures

Conjecture

M(L) ~ «alL for all convergent Idfs, and M(L) ~ L — o(L) for all
divergent Idfs.
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Power Law RSA

w(l) = (¢ —1)P for p > —1
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Power Law RSA

Theorem
When pu(f) = (€ — 1)2, let 8 = ¥33=5 ~ 0.372. Then,

P« L—M(L) < LP.



Power Law RSA

Theorem
When pu(f) = (€ — 1)2, let 8 = ¥33=5 ~ 0.372. Then,

P« L—M(L) < LP.

In general, we proved this for all p(¢) = (¢ — 1)P, with 3 as the
solution to (3 + p+3) =2l (p + 3)[(B + 1).
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Appendix: Multidisperse Theorem

Theorem
Given the multidisperse process with lengths (1, ...,£, and
probabilities q1, . .., qn, define functions P; and G as
ln
Pi(s) := M(L)e st dL,
ln—t;

G(s) := e~ (bn=o)s (0 + s(¢p — U)M(fn)> +2se” Z gie” " Pi(s).
i=1

Lljgoi /G exp(ZZq,EmEt)
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