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Rényi Parking Process

We begin with a length-L road.

1

Question
What is the expected number of cars placed at saturation?
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Rényi Parking Process

Let M(L) be the expected number of cars on a length-L road.

Step 1:

t L− t − 1

M(L) given t = 1 +M(t) +M(L− t − 1).
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Rényi Parking Process

Let M(L) be the expected number of cars on a length-L road.

Step 1:

t L− t − 1

M(L) given t = 1 +M(t) +M(L− t − 1).

M(L) = 1 +
1

L− 1

∫ L−1

0
(M(t) +M(L− t − 1)) dt.

Step 2: Use Laplace transforms.



Rényi Parking Process

Theorem (Rényi, 1958)

In the Rényi Parking Process, as L → ∞

M(L) ∼ CR · L,

where CR :=
∫∞
0 exp

(

−2
∫ t

0
1−e−u

u
du
)

dt ≈ 0.747598.



Rényi Parking Process

M(L) plotted with L:
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Random Sequential Adsorption

Random Sequential Adsorption (RSA) refers to processes in which
1-dimensional cars are parked onto a road.
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Multidisperse RSA

We have n different types of cars with lengths ℓ1 < ℓ2 < · · · < ℓn
and probabilities q1, q2, . . . , qn.

◮ Subashiev and Luryi (2007) characterized limL→∞
M(L)
L

in the
n = 2 case.

◮ We characterize limL→∞
M(L)
L

in the general n ≥ 3 case.



Multidisperse RSA Example
When ℓ1 = 1, ℓ2 = 1.3, ℓ3 = 1.5 with q1 = 0.5, q2 = 0.3, q3 = 0.2,

lim
L→∞

M(L)

L
≈ 0.778.
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When ℓ1 = 1, ℓ2 = 1.3, ℓ3 = 1.5 with q1 = 0.5, q2 = 0.3, q3 = 0.2,

lim
L→∞

M(L)

L
≈ 0.778.
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General Length Distributions

Let µ : [1,∞) → R
>0 be a function representing a distribution of

lengths (ldf).

Take a road of length L and truncate µ below L. We draw lengths
from this truncated µ.

e.g. µ(ℓ) = 1.
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General Length Distributions

A length distribution is convergent if

∫ ∞

1
µ(ℓ) dℓ < ∞.

e.g. µ(ℓ) = e−ℓ is convergent.
e.g. µ(ℓ) = 1 is divergent.

On a length-L road, convergent distributions weight small cars
more, whereas divergent distributions weight large cars more.

Question
Given an length distribution µ, how does M(L) behave?
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Theorem
When µ is convergent, then under mild conditions1 then there is

α < 1 with

M(L) ∼ αL.
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∫
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Theorem
When µ is convergent, then under mild conditions1 then there is

α < 1 with

M(L) ∼ αL.

e.g. µ(ℓ) = ℓ−1.1.
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Divergent LDF
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Divergent LDF

Theorem
When µ is divergent, then under mild conditions,2

M(L) = L− o(L).

e.g. µ(ℓ) = ℓ−0.7.

2We require that there exists ǫ > 0 such that for sufficiently large L,∫ L

0
ℓ · Z (ℓ) dℓ ≤ (1− ǫ) ·

∫ L

0
L

2
· Z (ℓ) dℓ,



Divergent LDF

Theorem
When µ is divergent, then under mild conditions,2

M(L) = L− o(L).

e.g. µ(ℓ) = ℓ−0.7.
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2We require that there exists ǫ > 0 such that for sufficiently large L,∫ L

0
ℓ · Z (ℓ) dℓ ≤ (1− ǫ) ·

∫ L

0
L

2
· Z (ℓ) dℓ,



Conjectures

Conjecture

M(L) ∼ αL for all convergent ldfs, and M(L) ∼ L− o(L) for all
divergent ldfs.
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Power Law RSA

µ(ℓ) = (ℓ− 1)p for p > −1.

p = −0.5:
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Power Law RSA

Theorem
When µ(ℓ) = (ℓ− 1)2, let β =

√
33−5
2 ≈ 0.372. Then,

Lβ−ǫ
≪ L−M(L) ≤ Lβ .



Power Law RSA

Theorem
When µ(ℓ) = (ℓ− 1)2, let β =

√
33−5
2 ≈ 0.372. Then,

Lβ−ǫ
≪ L−M(L) ≤ Lβ .

In general, we proved this for all µ(ℓ) = (ℓ− 1)p, with β as the
solution to Γ(β + p + 3) = 2Γ(p + 3)Γ(β + 1).
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Appendix: Multidisperse Theorem

Theorem
Given the multidisperse process with lengths ℓ1, . . . , ℓn and

probabilities q1, . . . , qn, define functions Pi and G as

Pi (s) :=

∫ ℓn

ℓn−ℓi

M(L)e−sL
dL,

G (s) := e−(ℓn−σ)s
(

σ + s(ℓn − σ)M(ℓn)
)

+ 2seσs
n
∑

i=1

qie
−ℓi sPi (s).

Then,

lim
L→∞

M(L)

L
=

∫ ∞

0
G (t) exp

(

−2
n
∑

i=1

qi Ein(ℓi t)

)

dt.


	Rényi Parking Process
	Multidisperse RSA
	General Length Distributions
	Power Law RSA

