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What's a Constraint Satisfaction Problem?

v

In a constraint satisfaction problem, we have variables.
We have control over variables.

In our case, they are boolean: 0 (false) or 1 (true)
We impose clauses (conditions), on our variables.

Each clause is imposed on a different subset of variables, but
clauses can “overlap” on the variables they're imposed on (a
variable can have multiple clauses corresponding to it)

We want to see if our variables can satisfy those constraints.
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The k-SAT Problem

» n boolean variables: 0 (false) or 1 (true).

» Impose m clauses. Each clause is “connected” to k variables.
Each connection from a clause to a variable is labeled true or
false (called a “literal”).

» The clause is imposed on its k variables, dissatisfied iff every
one of its k variables matches their respective connections
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“Regular” k-SAT

» We fix that each of the n variables must be corresponding to
exactly d clauses. This is called regular.

» m is total # of clauses, each clause imposed on k variables. n
is total # of variables, d clauses imposed on each variable

» d-n=k-m. Why?

Variables: n=6, Clauses: m=4

3 connections per clause
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“Regular, and Not all Equals-SAT"

» Furthermore, we now say a clause is dissatisfied iff every one
of its k variables matches its connection to clause OR every
one of its k variables differs from its connection with clause

Clause

\ Variable
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Random Constraint Satisfaction Problem

» Recalld-n=k-m.
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Random Constraint Satisfaction Problem

> Recall d-n =k -m.

» We fix the clause to variable ratio « = m/n = d/k, then let
m,n — oo. Then take a random regular NAE-SAT instance
with these parameters.

» This means clauses and literals (recall literals are connection
labels) are chosen randomly (so long as instance is d-regular)

» Intuitively, when there's a higher density of clauses
(constraints), it's harder for variables to satisfy clauses.
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Satisfiability threshold

» It turns out, as « stays constant and m,n go to infinity, the
probability of satisfiability (almost always) tends to 0 or 1.
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Satisfiability threshold

» It turns out, as « stays constant and m,n go to infinity, the
probability of satisfiability (almost always) tends to 0 or 1.

» Specifically, when « gets higher, it will pass a satisfiability
threshold, before which probability of satisfiability always
tends to one, and after which probability of satisfiability
always tends to zero.
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What's a Hypergraph?
» We investigated a similar problem involving hypergraphs

» In a normal graph, there are nodes, and certain connections
(called edges) between two nodes.

» Hypergraph: connections can involve more than two nodes.
P> These connections are called “hyperedges”

e
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Hypergraph Coloring

» Take hypergraph with n nodes and m hyperedges. Treat
nodes as variables, hyperedges as clauses.
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Hypergraph Coloring

» Take hypergraph with n nodes and m hyperedges. Treat
nodes as variables, hyperedges as clauses.

> Make every hyperedge consist of k nodes, each node part of d
hyperedges (“d-regular”). [HY15]

» Can we assign colors from {red, blue} = {0,1} to nodes so
there’s no monochromatic (same color) hyperedge?
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Random Constraint Satisfaction Problem

As before, we have d - n =k - m.
Once again, fix « = m/n = d/k and let m,n — oo

Consider a random hypergraph with those parameters.

vvyyy

If « greater than a certain satisfiability threshold, the
hypergraph is unlikely to be colorable as m,n — oo

» Conjecture: same satisfiability threshold as the NAE-SAT?
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Probability Theory

» In probability theory, we usually associate a random variable
X with a “probability mass function” p(x). For a given z;,
p(z;) equals the probability of X = z; occurring.
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Probability Theory

» In probability theory, we usually associate a random variable
X with a “probability mass function” p(x). For a given z;,
p(z;) equals the probability of X = z; occurring.

> If X is a dice roll, then p(2) = 1/6. But p(1.5) = 0.

> We are interested in the expected value of a random variable
X. We denote this with E[X]. This is essentially a weighted
average over all possible values X can take on.

» The expected value of a dice roll is%-l—i—é-?—i—---—i—%-ﬁ.
> E[X] =3 @i x p(xi)
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Probability Theory

> We often take a function of a random variable, yielding
another random variable. But what's the expectation?
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Probability Theory

> We often take a function of a random variable, yielding
another random variable. But what's the expectation?

» For example, squaring: we can calculate F[X?] for a dice by
adding £ - 12+ .-+ 4 % - 6

> Notice this is not the same as (E[X]).

» Observe Efg(X)] = >, g(zi) x p(z;)
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First moment method

» The "moment methods” are theorems that bound a
probability that a certain non-negative, integer-valued random
variable is > 0, by expected values (often easier to compute).
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First moment method

» The "moment methods” are theorems that bound a
probability that a certain non-negative, integer-valued random
variable is > 0, by expected values (often easier to compute).

» (First Moment Method). For a non-negative, integer-valued
random variable X, then

P(X > 0) < E[X].

» If X is counting something, then X > 0 shows existence.
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Second moment method

» The Second Moment Method lower bounds P(X > 0).
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Second moment method

» The Second Moment Method lower bounds P(X > 0).

» (Second Moment Method). For a non-negative, integer-valued
random variable X with finite variance, then

P(X >0) >
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Ding, Sly, Sun [DSS16]

» Proves exact satisfiability threshold for NAE-SAT model for
large enough k, as the solution to a system of equations.
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Ding, Sly, Sun [DSS16]

» Proves exact satisfiability threshold for NAE-SAT model for
large enough k, as the solution to a system of equations.

» First and second moment methods applied on individual
solutions bound d within an interval

» To find the exact value, the paper uses what's known as a
cluster model (clusters are defined as groups of solutions
that are relatively close to each other)

» First and second moment methods are applied on the number
of clusters, not the number of individual solutions
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or even that their threshold is algebraically well-defined.
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Our work

» Ding, Sly, Sun does not show their threshold holds for small &,
or even that their threshold is algebraically well-defined.

» We upper bound the satisfiability threshold for all £ > 3 and
provide a threshold matching the Ding, Sly, Sun paper by
interpolating a theorem from Sly, Sun, Zhang [SSZ16]

» We show the threshold also holds for the hypergraph model.

> Algebraically prove our upper bound is well-defined.
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