The Action of the Cactus Group on Arc Diagrams

Matvey Borodin Mentor: Leonid Rybnikov

Brookline High School

October 14-15, 2023 MIT PRIMES Conference

Arc Diagram

Arc Diagrams

Definition (Arc Diagram)

- Place n+1 points on a circle and label them $z_1, z_2, \ldots, z_n, z_\infty$
- z_1, z_2, \ldots, z_n can be in any order
- Connect points with non-intersecting arcs
- Valence of z_i is called ℓ_i

The Set of Arc Diagrams

- $X(\ell_1, \ell_2, \dots, \ell_n, \ell_\infty)$ is the set of all arc diagrams with valences $\ell_1, \ell_2, \dots, \ell_n, \ell_\infty$ for all orderings of the corresponding z_1, z_2, \dots, z_n .
- Here is X(2,2,2,2) (for all choices of distinct $i_1, i_2, i_3 \in \{1,2,3\}$):

Definition (Group)

A group is a set G with an operation $\times : G \times G \to G$ satisfying:

- Associativity: $a \times (b \times c) = (a \times b) \times c$
- Identity: $a \times e = e \times a = a$
- Inverses: $a \times a^{-1} = a^{-1} \times a = e$

Note that $a \times b$ is often written as ab.

Symmetric Group

 S_3 (permutations of 3 elements) under composition (\circ) is a group:

- The set is (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)
- Operation is composition: apply permutations one after the other from right to left.
- \blacksquare (1,2,3) is the identity.
- $(1,3,2) \circ (2,1,3) = (2,3,1)$

Definition (Group Action)

Given a group G and a set X, a group action is a function $\alpha: G \times X \to X$. Notationally $\alpha(g,x) = g \cdot x$.

- Identity: $e \cdot x = x$
- Compatibility: $g \cdot (h \cdot x) = (gh) \cdot x$

Essentially each $g \in G$ is assigned some transformation of X such that it is compatible with the group structure.

S_3 acts on a set of 3 ordered points

■ Permute the points according to the element of S_3 .

$$(2,1,3)(\bullet \bullet \circ) = (\bullet \bullet \circ)$$

$$(1,3,2)(\bullet \bullet \circ) = (\bullet \circ \bullet)$$

$$(1,3,2)(2,1,3)(\bullet \bullet \circ) = (2,3,1)(\bullet \bullet \circ) = (\bullet \circ \bullet)$$

Generators and Relations

 Generators are a set of group elements which can be multiplied to make elements in the group

Free Group

- Example: $\langle a, b \rangle$ is the set of strings consisting of a, b, a^{-1} and b^{-1} (× is concatenation)
- Thus $aba \times a^{-1}ba = abaa^{-1}ba = abba$

Generators and Relations

Relations are imposed on the generators

Relations

- Example: $\langle a, b \mid a^2 = b^2 = e \rangle$ is the set of strings consisting of a, b, a^{-1} and b^{-1} except we declare that aa = bb = e
- Thus $aba \times a^{-1}ba = abaa^{-1}bb = abba = aa = e$
- Groups are often defined in this way

The Cactus Group

Definition (Cactus Group J_n)

The cactus group is defined by the set of generators $\{s_{p,q} \mid 1 \le p < q \le n\}$ and relations:

- $s_{p,q}^2 = e$ where e is the identity for any $s_{p,q}$.
- $s_{p,q}s_{p',q'} = s_{p',q'}s_{p,q}$ if q' < p or q < p', that is, the intervals [p,q] and [p',q'] are disjoint.
- $s_{p,q}s_{p',q'}s_{p,q} = s_{p+q-q',p+q-p'}$ if $p \le p' < q' \le q$, that is, the interval [p',q'] falls inside the interval [p,q].

Action of the Cactus Group on Arc Diagrams

For the action of a generator $s_{p,q}$:

- Isolate the smallest section of the diagram containing points p through q.
- Reflect this section to reverse the order of the points.
- Broken connecting lines are reconnected in opposite order

Matvev Borodin

Example

Operation extended by composition:

Proof that it's a Group Action

• $s_{p,q}^2 = e$ where e is the identity for any $s_{p,q}$.

Proof that it's a Group Action

 $lacksquare s_{p,q} s_{p',q'} = s_{p',q'} s_{p,q}$ if q' < p or q < p', that is the intervals [p, q] and [p', q'] are disjoint.

Proof that it's a Group Action

■ $s_{p,q}s_{p',q'}s_{p,q} = s_{p+q-q',p+q-p'}$ if $p \le p' < q' \le q$, that is the interval [p',q'] falls inside the interval [p,q].

Results

Theorem (Borodin 2023)

Border thickness is an invariant of this group action. When n=3, border thickness is the only invariant so all diagrams with the same border thickness lie in the same orbit.

Results

Theorem (Borodin 2023)

The orbits over the set $X(2,2,\ldots,2)$ are completely characterized by the number of components. That is, there is exactly one orbit for every possible number of components. In particular, there is a total of $\lfloor n/2 \rfloor$ orbits.

Results

Theorem (Borodin 2023)

The cactus group J_n acts transitively on the set $X(\ell_1,\ell_2,\ldots,\ell_n,\ell_\infty)$ when there exists some $\ell_i=1$ (or $\ell_\infty=1$).

Theorem (Borodin 2023)

When the cactus group J_n acts on the set $X(\ell_1, \ell_2, \dots, \ell_n, \ell_\infty)$, the braid relation $s_{i,i+1}s_{i-1,i}s_{i,i+1} = s_{i-1,i}s_{i,i+1}s_{i-1,i}$ is always satisfied.

Acknowledgements

- I would like to thank my mentor, Prof. Leonid Rybnikov for suggesting this topic and guiding me in my exploration of it.
- I would also like to thank the MIT PRIMES Program for making this project possible.
- Finally, I would like to thank my parents supporting me throughout my endeavors.

