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Concept of symmetry is very important in mathematics and physics (e.g. gauge
theory).

o Mathematically formalized by groups

Instead of a formal definition, we give some examples of groups:
@ The symmetric group S, set of all permutations of n elements;

o A bijection of a set onto itself, definition of “symmetry"
e Symmetry group S, is an isometric permutation of vertices for tetrahedron:

AA AA

@ The group of invertible matrices GLy over a field F with matrix multiplication.
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When symmetries are continuous: Lie groups.
For example:

@ Rotations of a sphere SO(3)

@ Special linear groups SL(2) given by

SL(2) = {(i 5) |ad — be = 1}

Slogan 1: groups are difficult, infinitesimal transformations are easier — Lie algebras.
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Examples — derivations:

@ D= d%' infinitesimal version of translations by Taylor's formula:
f(x +t) = f(x) + t-df Jdx + O(t?).

Q@ D, = Xd%: infinitesimal version of dilations f(etx).

Observe both Dy, D, are derivations. However, they do not have an algebra structure:
@ Dj o Dy is not a derivation
e But DijoD,—DyoDy =L is

We denote D1 o Dy — Dy o Dy by [Dy, Ds].

Definition

A Lie algebra is a vector space g equipped with the skew-symmetric bilinear map
[—, —] satisfying the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] =0, a,b,c € g.

Examples:
o The set of derivations D

@ gl,: set of n X n matrices with commutator [A,B] ;= A- B — B - A;
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Lie Algebra Representations

Slogan 2: groups are difficult, linear algebra is also difficult, but well-studied. Hence:
study groups via linear algebra — representation theory. E.g., representations
correspond to particles in physics.
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Lie Algebra Representations

Slogan 2: groups are difficult, linear algebra is also difficult, but well-studied. Hence:
study groups via linear algebra — representation theory. E.g., representations
correspond to particles in physics.

Definition

A representation of g is a vector space C" with a map of Lie algebras g — gl,,.

This map represents each element in g as a matrix.

Examples:

o Tautologically, C" for gl,
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Main object for today: slp.

stzz{c Z) |a+d:0}

Over complex numbers: same as the Lie algebra of SO(3).
For representations, take

0 1 0 0 1 0
E'_)[O O}’ F»—>[1 O]’ H»—)[O _1}.

More abstractly: spanned by E, F, H with relations
[H, E] = 2E, [H,F] = —2F, [E,F] = H.
How to study representations? Basic building block — irreducibles:

Definition

A representation V is irreducible if it does not contain a non-trivial subrepresentation.



Representations of sl

Main object for today: sl,.

(2 Ylerono)

Over complex numbers: same as the Lie algebra of SO(3).
For representations, take

0 1 0 0 1 0
EH[O 0}, F»—>[1 0], H»—)[O _1}.

More abstractly: spanned by E, F, H with relations

[H, E] = 2E, [H,F] = —2F, [E,F] =H.

6/13 Brian Li Tensor Product Decompositions for Modules Over Subregular W-algebras



Representations of sl

6/13

Main object for today: sl,.

(2 Ylerono)

Over complex numbers: same as the Lie algebra of SO(3).
For representations, take

0 1 0 0 1 0
E'_)[O O}’ F»—>[1 0], H»—)[O _1}.

More abstractly: spanned by E, F, H with relations
[H, E] = 2E, [H,F] = —2F, [E,F] =H.

How to study representations? Basic building block — irreducibles:

Definition

A representation V is irreducible if it does not contain a non-trivial subrepresentation.

Brian Li Tensor Product Decompositions for Modules Over Subregular W-algebras



Irreducible representations

For sl — complete classification:

Theorem

Irreducible finite-dimensional representations V, of sly are classified by a natural
number n and are of the form V), := span(v, Fv, F?v,..., F"v), where the vector v
satisfies Ev = 0 (highest-weight vector).
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Irreducible finite-dimensional representations V, of sly are classified by a natural
number n and are of the form V), := span(v, Fv, F?v,..., F"v), where the vector v
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Natural operation on representations: tensor product (for instance, corresponds to
combined system of particles)

o Decomposition of tensor products are actually completely determined by highest
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Theorem (Clebsch-Gordan)

min(n,m)
For irreducible representations Vi, Vin, we have Vo ® Vin 2 @D Vipym—2«-
k=0
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Theorem (Clebsch-Gordan)

min(n,m)
For irreducible representations Vi, Vin, we have Vo ® Vin 2 @D Vipym—2«-
k=0

0

For instance, let C? = span(vi, v») where v; = [(1)} SV = [1

}. Then, highest-weight

vectors of C2 ® C? are

i1®vi,vi®@wn—-—wn®v)eVad W.
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Whittaker Modules

To decompose V,, ® Vi, enough to find highest-weight vectors in this tensor product.

o What if Ev = v? Called Whittaker vectors, generate Whittaker modules.
Naturally arise in physics (Toda system).

@ Decomposition of Whittaker modules: likewise, completely classified by Whittaker
vectors Whit(W).
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Whittaker Modules

To decompose V,, ® Vi, enough to find highest-weight vectors in this tensor product.

o What if Ev = v? Called Whittaker vectors, generate Whittaker modules.
Naturally arise in physics (Toda system).

@ Decomposition of Whittaker modules: likewise, completely classified by Whittaker
vectors Whit(W).

Theorem (Kalmykov, 2021)

For any Whittaker module 'W and a finite-dimensional representation V of sly, we
have Whit(W ® V) = Whit(W) ® V' canonically.
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Non-standard quantization

Application: non-standard quantization of SLy. Two ways to compute Whittaker
vectors in W@ U® V:
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Non-standard quantization

Application: non-standard quantization of SLy. Two ways to compute Whittaker
vectors in W@ U® V:

Whit(W®@ U ® V) = Whit(W® U) @ V = (Whit(W) @ U) ® V

Whit(W® U ® V) = Whit(W) ® (U V).
Differ by the action on U ® V of

k—1
J= ZJ“ 27 =" (2kk| Feo[JtH-20.
i=0

k>0

Deforms multiplication on functions on SLj:

fxg:= ZJE)(f) . J,(<2)(g), f,g € Fun(SLyp).

9/13 Brian Li Tensor Product Decompositions for Modules Over Subregular W-algebras



Generalization

Generalization: W-algebras (Whittaker Modules for gl,).
Our research: tensor product decomposition for subregular W-algebras.

Theorem (Kalmykov-L., 2023)

For any subregular Whittaker module W and the vector representation V' of gl,, there
is an explicit identification

Whit(W ® V) 2 Whit(W) ® V.

In particular, allows to construct canonically Whittaker vectors in W ® U for any
finite-dimensional representation U of gl,,.

Likewise, gives non-standard quantization of the group GLy.
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