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Introduction

Concept of symmetry is very important in mathematics and physics (e.g. gauge
theory).

Mathematically formalized by groups
Instead of a formal definition, we give some examples of groups:

1 The symmetric group Sn, set of all permutations of n elements;
A bijection of a set onto itself, definition of “symmetry"
Symmetry group S4 is an isometric permutation of vertices for tetrahedron:

2 The group of invertible matrices GLN over a field F with matrix multiplication.
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Introduction

When symmetries are continuous: Lie groups.
For example:

Rotations of a sphere SO(3)

Special linear groups SL(2) given by

SL(2) =
{(

a b
c d

) ∣∣ad − bc = 1
}

.
Slogan 1: groups are difficult, infinitesimal transformations are easier — Lie algebras.
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Introduction

Examples — derivations:
1 D1 = d

dx , infinitesimal version of translations by Taylor’s formula:

f (x + t) = f (x) + t · df /dx + O(t2).

2 D2 = x d
dx : infinitesimal version of dilations f (etx).

Observe both D1, D2 are derivations. However, they do not have an algebra structure:
D1 ◦ D2 is not a derivation
But D1 ◦ D2 − D2 ◦ D1 = d

dx is
We denote D1 ◦ D2 − D2 ◦ D1 by [D1, D2].

Definition
A Lie algebra is a vector space g equipped with the skew-symmetric bilinear map
[−, −] satisfying the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, a, b, c ∈ g.

Examples:
The set of derivations D
gln: set of n × n matrices with commutator [A, B] := A · B − B · A;
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Lie Algebra Representations

Slogan 2: groups are difficult, linear algebra is also difficult, but well-studied. Hence:
study groups via linear algebra — representation theory. E.g., representations
correspond to particles in physics.

Definition
A representation of g is a vector space Cn with a map of Lie algebras g → gln.

This map represents each element in g as a matrix.

Examples:
Tautologically, Cn for gln
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Representations of sl2

Main object for today: sl2.

sl2 =
{(

a b
c d

) ∣∣a + d = 0
}

Over complex numbers: same as the Lie algebra of SO(3).
For representations, take

E 7→
[

0 1
0 0

]
, F 7→

[
0 0
1 0

]
, H 7→

[
1 0
0 −1

]
.

More abstractly: spanned by E , F , H with relations

[H, E ] = 2E , [H, F ] = −2F , [E , F ] = H.

How to study representations? Basic building block — irreducibles:

Definition
A representation V is irreducible if it does not contain a non-trivial subrepresentation.
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Irreducible representations

For sl2 — complete classification:

Theorem
Irreducible finite-dimensional representations Vn of sl2 are classified by a natural
number n and are of the form Vn := span(v , Fv , F 2v , . . . , F nv), where the vector v
satisfies Ev = 0 (highest-weight vector).

Natural operation on representations: tensor product (for instance, corresponds to
combined system of particles)

Decomposition of tensor products are actually completely determined by highest
weight vectors

Theorem (Clebsch-Gordan)

For irreducible representations Vn, Vm, we have Vn ⊗ Vm ∼=
min(n,m)⊕

k=0
Vn+m−2k .

For instance, let C2 = span(v1, v2) where v1 =
[

1
0

]
, v2 =

[
0
1

]
. Then, highest-weight

vectors of C2 ⊗ C2 are

(v1 ⊗ v1, v1 ⊗ v2 − v2 ⊗ v1) ∈ V2 ⊕ V0.
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Whittaker Modules

To decompose Vn ⊗ Vm, enough to find highest-weight vectors in this tensor product.
What if Ev = v? Called Whittaker vectors, generate Whittaker modules.
Naturally arise in physics (Toda system).
Decomposition of Whittaker modules: likewise, completely classified by Whittaker
vectors Whit(W).

Theorem (Kalmykov, 2021)

For any Whittaker module W and a finite-dimensional representation V of sl2, we
have Whit(W ⊗ V ) ∼= Whit(W) ⊗ V canonically.
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Non-standard quantization

Application: non-standard quantization of SL2. Two ways to compute Whittaker
vectors in W ⊗ U ⊗ V :

Whit(W ⊗ U ⊗ V ) ∼= Whit(W ⊗ U) ⊗ V ∼= (Whit(W) ⊗ U) ⊗ V ,

Whit(W ⊗ U ⊗ V ) ∼= Whit(W) ⊗ (U ⊗ V ).

Differ by the action on U ⊗ V of

J =
∑

k

J(1)
k ⊗ J(2)

k =
∑
k≥0

(−1)k

2kk!
F k ⊗

k−1∏
i=0

(H − 2i).

Deforms multiplication on functions on SL2:

f ∗ g :=
∑

i

J(1)
k (f ) · J(2)

k (g), f , g ∈ Fun(SL2).
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Generalization

Generalization: W-algebras (Whittaker Modules for gln).
Our research: tensor product decomposition for subregular W-algebras.

Theorem (Kalmykov-L., 2023)

For any subregular Whittaker module W and the vector representation V of gln, there
is an explicit identification

Whit(W ⊗ V ) ∼= Whit(W) ⊗ V .

In particular, allows to construct canonically Whittaker vectors in W ⊗ U for any
finite-dimensional representation U of gln.

Likewise, gives non-standard quantization of the group GLN .

10 / 13 Brian Li Tensor Product Decompositions for Modules Over Subregular W-algebras



Acknowledgements

I would like to kindly thank:
My mentor, Dr. Artem Kalmykov, for guiding me through the tough
mathematical readings and being patient with me throughout the entire research
process
MIT PRIMES organizers, in particular Prof. Pavel Etingof, Dr. Slava Gerovitch,
and Dr. Tanya Khovanova, for providing this wonderful opportunity for me to do
math research
My parents for always being so supportive.

11 / 13 Brian Li Tensor Product Decompositions for Modules Over Subregular W-algebras



References

T. Arakawa. “Introduction to W-algebras and their representation theory”.
Perspectives in Lie theory. Vol. 19. Springer INdAM Ser. Springer, Cham, 2017,
pp. 179–250.
P. Etingof and O. Schiffmann. “Lectures on the dynamical Yang-Baxter
equations”. Quantum Groups and Lie Theory (Durham, 1999), London Math.
Soc. Lecture Note Ser 290 (2001), pp. 89– 129
P. Etingof and O. Schiffmann. Lectures on quantum groups. Second. Lectures in
Mathematical Physics. International Press, Somerville, MA, 2002, pp. xii+242.
W. Fulton and J. Harris. Representation theory. Vol. 129. Graduate Texts in
Mathematics. A first course, Readings in Mathematics. Springer-Verlag, New
York, 1991, pp. xvi+551. URL: https://doi.org/10.1007/978-1-4612-0979-9.
S. M. Goodwin. “Translation for finite W -algebras”. Represent. Theory 15
(2011), pp. 307–346. URL: https://doi.org/10.1090/S1088-4165-2011-00388-5.

12 / 13 Brian Li Tensor Product Decompositions for Modules Over Subregular W-algebras



References

J. E. Humphreys. Introduction to Lie algebras and representation theory. Vol. 9.
Graduate Texts in Mathematics. Second printing, revised. Springer-Verlag, New
York-Berlin, 1978, pp. xii+171.
A. Kalmykov. Geometric and categorical approaches to dynamical representation
theory. eng. Zürich, 2021.
B. Kostant. “On Whittaker vectors and representation theory”. Invent. Math.
48.2 (1978), pp. 101–184. URL: https://doi.org/10.1007/BF01390249.
I. Losev. “Finite W-algebras”. Proceedings of the International Congress of
Mathematicians. Volume III. Hindustan Book Agency, New Delhi, 2010, pp.
1281–1307.

13 / 13 Brian Li Tensor Product Decompositions for Modules Over Subregular W-algebras


