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Abstract

We introduce a novel statistical framework, to analyze single-cell gene-expression

counts in samples with autosomal alterations. Unlike the loss of the Y chromo-

some—easily detected due to gene de-activation and explored in prior works—identifying

cells with autosomal alterations is fundamentally challenging. This complexity arises

because, expression for autosomal chromosomes undergoing loss or alteration exhibits

significant variability, rendering detection purely based on absolute counts unreliable.

Our key insight for detecting chromosomal loss in a cell is based on the idea of nor-

malizing against another chromosome, whose expression is known to be statistically

independent of target chromosomal loss/mutation. This leads us to a precise charac-

terization in terms of binomial distributions, and we can perform a hypothesis test for

each cell and detect ploidy. We extend this framework for detection of cells with allelic

alterations. We then develop a classification algorithm that detects chromosomal loss

under control on false positivity rate (FPR). We validate our model by utilizing counts

of single RNA molecules from haplotypes affected in a fraction of the cells analyses,

and then use the algorithm to identify cells that have lost chromosome 18 in brain

cells or carry a 9q CN-LOH alteration in chromosome 9q in induced pluripotent stem

cells derived from peripheral blood mononuclear cells. Cell-by-cell identification of

chromosomal loss is a critical step for inferring gene expressivity, and we identify a

consistent pattern of abnormal trans-chromosomal expression in cells with autosomal

loss/alterations. Our study also leads to a rather surprising finding: prior studies as-

sociate 9q CN-LOH with diverse detrimental effects, and in contrast our study reveals

that the mutated cells behave no differently from non-mutated cells.

Keywords: Drop-seq, RNA sequencing, CN-LOH, Loss of Chromosome, Statistical Model,

Trans-chromosomal expression.

2



Contents

1 Introduction 4

1.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Methods 7

2.1 Likelihood Model for Absolute Counts with Chromosome loss . . . . . . . . 7

2.2 Likelihood Model for Allele-Specific Counts . . . . . . . . . . . . . . . . . . . 8

2.3 Classification based on the two Likelihoods . . . . . . . . . . . . . . . . . . . 9

2.4 Expression analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Doublet Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Results 10

3.1 Data Preparation Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Cell-by-Cell analysis with LO18 in Brain Cells . . . . . . . . . . . . . . . . . 12

3.3.1 Absolute Count Based Classification . . . . . . . . . . . . . . . . . . 13

3.3.2 Allele-Specific Count Results . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 Combined Likelihood Results . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Cell-by-Cell analysis for CN-LOH Mutations . . . . . . . . . . . . . . . . . . 18

3.5 Gene-Expression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 LO18 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 CN-LOH Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.3 Impact of Trans-Chromosomal Regulation under CN-LOH . . . . . . 22

4 Future Work 23

5 Acknowledgements 23

Bibliography 24

3



dropseq.png

Figure 1: Single cells encapsulate individual cells in nanoliter-sized droplets with beads carrying unique

cell barcodes and Unique Molecular Identifiers (UMIs). Inside each droplet, the cell is lysed, and its mRNA

binds to the bead, where reverse transcription incorporates the cell barcode and UMI into the cDNA. After

breaking the droplets and amplifying the cDNA, a sequencing library is prepared and sequenced. The

resulting data is processed by demultiplexing reads based on cell barcodes, assigning them to individual

cells. Within each cell’s group of reads, UMIs are used to identify and count unique mRNA molecules, with

duplicates of the same original mRNA molecule counted as one.

1 Introduction

Our proposed approach, based on Drop-Seq [7] and its extensions [23] (Fig. 1), enables

precise quantification of gene expression in individual cells, forming an expression matrix

with rows as cells and columns as genes. This high-resolution method has revealed cellular

heterogeneity, identified rare cell types, and characterized individual cell states [6]. It has

offered insights into developmental biology [16], enhanced understanding of diseases like

cancer [11], and paved the way for precision medicine [12]. Additionally, it has led to the

discovery of new cell types [8] and expanded our knowledge of cellular interactions and

responses [10]. Overall, single-cell analysis has the potential to revolutionize medicine and

biology.
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Figure 2: Overall Schematic Diagram of proposed approach. We take data from cells and read them cell

by cell using dropseq. Then we use a sequencing machine to create the data for each variant. From there

we extract the counts for the ”Retained” and ”Lost” Chromosomes. We are able to determine which one is

which because we can figure out which variant is present more in the cell than the other. That variant is

the ”Retained” chromosome while the other is ”Lost”. Finally we can use the logarithmic likelihood model

(outlined later) to figure out which cells are euploid and which are aneuploid (mutated). This process leads

us to isolating cells with autosomal mutations. We then employ statistical tests to identify significantly

abnormal trans-chromosomal expressivity.

Context for Proposed Project. Recent works [17, 14, 25] have explored large-scale

analysis of single-cell and single-nuclei RNA to understand mosaic loss of Y (mLOY) chro-

mosomes. [25] presents evidence of mLOY in the microglia and highlights its potential roles

in aging and the pathogenesis of neurodegenerative disorders. Further studies found that

clonality in blood ascertained from mosaic chromosomal alterations, including mLOY, is

strongly associated with aging [14, 18, 25].

In contrast, similar analysis for autosomes is either missing or has not been systematically

investigated. Our goal is to develop single-cell analysis methods on populations with mosaic

loss in autosomes. Our objectives are twofold:

• Identify mutated cells, namely, those cells in the sample population with chromosomal

loss or alteration

• Within the identified mutated cells, identify genes among the trans-chromosomal set
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exhibiting consistent abnormal patterns.

We will study datasets with loss of Chromosome 18 (LO18) in brain cells and copy neutral

loss of heterozygosity (CN-LOH) in induced pluripotent stem cells (iPSCs), exploring the

molecular basis of autosomal alterations and their biological associations. Mosaic chromo-

somal alterations in brain cells increase with age, as approximately 3% of our 2,500 brain

nuclei dataset have LO18. 9q CN-LOH is observed in embryonic stem cells [24] and observed

as mosaic in around 5% of iPSCs analyzed by the California Stem Cell Agency (CIRM).

Challenge. Fundamentally methods developed for mLOY such as in [25] cannot be extended

to autosomal mutations. This is because mLOY is readily detectable. Indeed if a cell loses

the Y chromosome, the counts associated with Y chromosome is essentially zero. In contrast,

the situation with autosomal loss or alterations is inherently stochastic. Counts due to loss

or alterations is no longer zero since one of the chromosomal copies is retained. Additionally,

counts exhibit high variability even among normal cells and as such we can no longer detect

alterations purely based on counts corresponding to a chromosome.

Proposed Approach. The schematics of our approach is depicted in Fig. 2, where we utilize

single-cell sequencing, and construct test statistics to identify mutated cells at a desired

significance level. We present a novel statistical framework by modeling expression counts

by means of a binomial likelihood model. This leads us to statistical tests and classification

algorithms for cell-by-cell detection of chromosomal alterations under desired false positive

rate constraints. We validate our model by utilizing counts of single RNA molecules from

haplotypes affected in a fraction of the cells analyses, and then use the algorithm to identify

cells that have lost Chromosome 18 in brain cells or carry a 9q CN-LOH alteration in

chromosome 9q in iPSCs derived from peripheral blood mononuclear cells. We then test for

statistical significance of trans-chromosomal gene expression for the detected mutated cells

and study its impact on biological processes.

1.1 Research Contributions

The primary research contributions are:

1. The creation of a novel classifier for identification of mutated and non-mutated cells

and validated on brain cells and iPSCs.

2. Method for identification of trans-chromosomal genes that have significance.
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3. Observation that specific genes are consistently abnormally expressed across samples

of CN-LOH. This suggests severe impact on biological processes such as tumor growth.

2 Methods

In this section we describe methods to analyze single cell RNA count data for two datasets:

LO18 on brain cells and 9q CN-LOH for iPSCs. McCarroll lab has access to 2,500 samples of

brain tissue among which 3% are known to suffer from LO18. We use SCPred [20] to further

classify cells into seven cell types: Astrocyte, Gabaergic, Glutamatergic, Polydendrocyte,

Oligodendrocyte, Endothelia, and Microglia, as these are the prevalent cell types observed

in brain tissue. In addition, we have data with CN-LOH and we see a significant loss

in chromosome 9q in induced pluripotent stem cells (iPSCs). 9q CN-LOH is observed in

embryonic stem cells and this is observed as mosaic in around 5% of iPSCs analyzed [24].

2.1 Likelihood Model for Absolute Counts with Chromosome loss

We have one dataset with Chromosomal loss, specifically brain cells with LO18. While we

will describe our method in the context of Chromosome 18 loss, it is general and applicable to

other cell types or situations with different chromosome loss. In our setting, cells with LO18

are expected to have half the RNA molecules from the aneuploid chromosome. However,

detecting ploidy from absolute count data is challenging due to significant variability in both

euploid and aneuploid cells, leading to potentially similar counts.

For this reason, we propose to baseline the counts against the counts of another chromo-

some, which we a priori know to have suffered no loss. For each cell barcode we count the

number of unique RNA molecules whose sequencing reads align against Chromosome 4 and

those that align against Chromosome 18. For our dataset we arbitrarily selected Chromo-

some 4 as a control chromosome, since we do not expect Chromosome 4 to be found in an

aneuploid state in the brain nuclei.

We expect a predefined ratio between the amount of RNA coming from each cell for

Chromosome 4 and Chromosome 18 with the ratio for euploid cells being twice the ratio

for aneuploid cells. Using this insight we consider the test-statistic, t(n4, n18) = n4

n4+n18
,

for each cell of a cell type, where n4 is the number of counts for Chromosome 4 and n18

is the number of counts for Chromosome 18. This statistic has the nice feature that it is

normalized to one, and the ratio t(n4,n18)
1−t(n4,n18)

= 0.5 t(n4,n18/2)
1−t(n4,n18/2)

. Thus if we have two cells in
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euploid state with identical counts, and one of these undergoes LO18, we will expect this

statistic to reveal ploidy. However, since no two cells are identical and cells exhibit significant

variability, we observe variability in the test statistics as well. Using the insight from this

statistic, we develop a novel statistical model based on binomial distribution to account for

the variability.

For each cell type, we cluster the list of test statistics for cells of that cell-type in this

ratio space, using one of the standard clustering methods [9]. As such we expect to see a

nice separation into two clear clusters due to the property of the statistic just described.

The median of the cluster corresponding to the larger ratio we denote by pa (associated with

aneuploids) and the median of the cluster with smaller ratios as pe (associated with euploids).

After estimating these two ratios by clustering in the ratio space, we use a binomial likelihood

model to estimate likelihoods for the observed counts given according to each model. We

then build a classifier based on the ratio of these two likelihoods to infer ploidy.

Likelihoode =

(
n4 + n18

n18

)
· pn4

e · (1− pe)
n18 (1)

Likelihooda =

(
n4 + n18

n18

)
· pn4

a · (1− pa)
n18 (2)

This is the binomial probability of observing n4 reads on Chromosome 4 conditional on

the total number of reads observed on Chromosome 4 and 18 being n18 + n4.

Now, let Ratio = Likelihooda
Likelihoode

= p
n4
a ·(1−pa)n18

p
n4
e ·(1−pe)n18

. We then worked off of Score = log10(Ratio) to

detect the loss if the Score ≥ 1, else if Score ≤ −1 declare as euploid, and otherwise detect

the cell as uncertain. The intuition here is that by normalizing with Chromosome 4, the

variability is suppressed, while simultaneously allowing for ploidy to be detectable.

2.2 Likelihood Model for Allele-Specific Counts

First, we describe the model in the presence of chromosomal loss and then extend the model

in the presence of chromosomal alterations.

Chromosomal Loss. Allele-specific count data in single-cell RNA sequencing (scRNA-seq) in

the presence of chromosome loss can be insightful. In a normal euploid cell, genes have two

alleles, one from each parent. When there is a loss of a chromosome, one of the alleles may

be lost, leading to a monoallelic expression pattern. Allele-Specific counts record the gene

expression of each variant of a chromosome in every cell. An analysis on all cells of a cell
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type detects which variant appears more than the other. The variant that appears the most

we call the retained allele and the loss allele.

The binomial model for this setting is somewhat simpler than what we needed for absolute

count data. Intuitively, suppose a chromosome has two alleles, and if the chromosome is in

a euploid state, a random draw would yield either of the two alleles with equal probability.

On the other hand, for a aneuploid state, a random draw is essentially deterministic yielding

the allele that is preserved. With this in mind, we set the euploid binomial parameter so:

pe = 0.5 and the aneuploid parameter so: pa = 0.95. This is because for aneuploid cells,

while we expect all RNA molecules to originate from the retained chromosome, due to the

inevitability of allele determination errors and ambient RNA contamination, we allow 5% of

the RNA molecules count to be from the lost chromosome.

Chromosomal Alterations. In this case while chromosomes are not lost, the alleles lost are

replaced predominantly by the alleles that are retained. As a result we can use a similar

argument and justify a similar binomial model. More precisely, we set the binomial parameter

for the mutated cell to be close to one, and set pa ≈ 0.95 since we expect one of the alleles

uniformly across both copies. Since in the non-mutated cell both alleles are equally likely

we set the non-mutated parameter to be pe = 0.5. Note that we overload notation and use

the same symbols as euploid and aneuploid for notational convenience.

The scores with allele-specific counts are computed in a similar fashion - the score is the

log-likelihood of the ratio of the probability of mutation to the probability of normality.

2.3 Classification based on the two Likelihoods

We compute likelihoods for each of the two biological models, mutated and non-mutated,

corresponding to the two observations, absolute and allele-specific counts. Then we compute

scores associated with the two counts. The scores for absolute counts and allele-specific

counts are the log-likelihood ratios of the probabilities of observing the absolute count and

allele-specific counts respectively under the two biological models, mutated and non-mutated.

If Score for the absolute count (resp allele-specific count) ≥ 1, then we labeled the cell as

aneuploid; if Score ≤ −1, euploid. Otherwise, the ploidy is uncertain. The total score of

a cell is the sum of log-likelihood ratios. We doubled the threshold for detecting aneuploid

and euploid, namely, if the sum of the scores is greater than 2, it is euploid, less than -

2, aneuploid, and otherwise uncertain. Our intuition is that by doing so we can increase

confidence when we declare a cell’s ploidy.
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2.4 Expression analysis

We also want to understand how gene expression changes with ploidy, so we can use differ-

ential gene expression matrices which record every gene’s expression in every cell. We can

aggregate the columns by their cell type and ploidy, and then create a 2×2 table like below:

Expression Count mutated

cells of a specific cell type

Expression in non-mutated

cells of the same cell type

Gene A a b

Excluding Gene A c d

where a, b, c, d are integers. Then, to calculate the expression change between mutated and

non-mutated states for each cell type, we can compare the ratios a
b
and c

d
to get a

b
/ c
d
= ad

bc
.

This ratio is approximately one under null-hypothesis that there is no significant expression

change compared to all the other genes. For each gene we use the Mann-Whitney U Test [2]

to determine whether gene-expression is statistically significant in the mutated state for all

cell types.

2.5 Doublet Detection

Sometimes, the counts have “doublets,” or reads that have two cells in the same droplet. It

is important to detect these events since the counts corresponding to doublets can mislead us

into classifying them as either aneuploid or euploid. We can reduce the problem of doublet

detection into a binomial testing problem. Specifically, let (xi, yi) be the retain and loss

coordinates for a cell, i. Note that we always have xi ≥ yi. Under the hypothesis that we

do not have a doublet, we have two possibilities for the cell: (a) the cell is a euploid: to test

for significance that the cell is not a euploid, we can compute the p-value with the binomial

distribution with parameter 0.5, which yields, pi = Σxi+yi
k=xi

(
xi+yi

k

)
·0.5k ·(1−0.5)xi+yi−k; (b) the

cell is a aneuploid: to test the significance that cell is not a aneuploid, we compute the p-value

for the binomial with parameter 0.95, which yields: qi = Σxi
k=0

(
xi+yi

k

)
·0.95k · (1−0.95)xi+yi−k.

If both pi and qi are less than 0.01, we label that cell as a doublet.

3 Results

In this section, we will describe our data preparation pipeline and the dataset used for our

studies. Then we will apply our proposed statistical framework (Section 2) for two studies,
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the first on LO18 in brain cells, and the second on 9q CN-LOH in stem cells. Subsequently,

we will use the results of these studies to deduce the role of LO18 and 9q CN-LOH on

trans-chromosomal gene expression.

3.1 Data Preparation Pipeline.

Using a pipeline (see Fig. 1, 2) developed for the analysis on single cell RNA expression [23],

single cell RNA data is generated. Briefly, DNA barcoded beads and brain nuclei are colo-

calized within droplets and RNA molecules are extracted from the nuclei and barcoded with

synthetic oligonucleotides localized on each bead. RNA is the reverse transcribed into DNA

and amplified to generate a library that is then analyzed using an Illumina sequencing ma-

chine. Reads are grouped into single molecules using UMI barcodes and then grouped into

nuclei using bead barcodes.

3.2 Datasets

Brain Cells for LO18 Study. We work on a single sample of a woman who had a low

cell fraction, so she was very likely to have LO18. DNA microarray data from brain tissues

indicates the presence of a mosaic LO18 and a germline loss of one copy of the tip of 18p,

consistent with the presence of a ring Chromosome 18 known to lead to recurrent loss of the

whole chromosome [5, 1, 3]. We next use SCPred [20] to further classify cells and extract

seven cell types as these are prevalent cell types observed in brain tissue. For these cell types

we gather the absolute and allele-specific counts. The dataset details are described on the

left of Table 1 and Table 2 for the two different counts. Note that due to machine errors the

two cumulative cell counts are not identical. Nevertheless the differences are small, and for

a substantial number of cells we observe both counts.

Next, using the data preparation pipeline described above, we generate single cell RNA

data for brain nuclei of the donor for each cell-type. Through the data preparation process

explained in Sec. 3.1 we obtain over 10,000 brain nuclei. The amount of RNA molecules for

each nuclei ranges from a few hundreds to a few thousands and we use these molecules to

infer cell type and presence of LO18.

Stem Cell dataset for CN-LOH Study. Here we use a CN-LOH dataset, where we see

a significant loss in chromosome 9q in induced pluripotent stem cells (iPSCs). 9q CN-LOH

is observed in embryonic stem cells and this event is observed as mosaic in around 5% of

iPSCs analyzed [24]. We used four samples of around 10,000 iPSCs to test the framework.
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Cell Type Total Cells

Astrocyte 1452

Gabaergic 1361

Glutamatergic 1620

Polydendrocyte 617

Oligodendrocyte 4138

Endothelia 279

Microglia 806

Total 10373

Euploid Aneuploid Uncertain

1312 56 84

1237 54 70

1483 63 74

61 505 51

460 3153 525

180 29 70

578 106 122

5011 3966 996

Table 1: Absolute Counts: Total number of cells, and counts of cells with euploid, aneuploid,

and uncertain ploidy for each cell type.

Cell Type Total Cells

Astrocyte 1480

Gabaergic 1401

Glutamatergic 1629

Polydendrocyte 607

Oligodendrocyte 4034

Endothelia 219

Microglia 784

Total 10154

Euploid Aneuploid Uncertain

1241 90 149

1253 36 112

1438 80 111

74 444 89

671 1606 1757

116 18 85

380 66 338

5173 2340 2641

Table 2: Allele-Specific Counts: Total number of cells, and counts of cells with euploid,

aneuploid, and uncertain ploidy for each cell type.

Using the same pipeline described for brain data, we generate single cell RNA data for these

iPSCs. The details of the number of cells for the different samples is presented in Table 3.

3.3 Cell-by-Cell analysis with LO18 in Brain Cells

In this section we will apply our proposed method described in Section 2 on the LO18 data

tabulated in Table 1. We focused mostly on glutamatergic, polydendrocyte and oligodendro-

cyte cells since endothelia and microglia cells had too few counts and astrocyte and gabaergic

ended up acting just like glutamatergic.
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Sample No. of Cells

1 7947

2 9330

3 9431

4 7414

Total 34122

Normal CNLOH Uncertain Doublet

6974 722 68 183

6798 1804 19 709

7664 1252 21 494

6405 695 60 254

27841 4473 168 1640

Table 3: For each sample, we have different counts of cells. The table shows the distribution

of normal, non-mutated cells, cells with CN-LOH (Copy-Neutral Loss of Heterozygosity),

cells which we are uncertain that they have a 9q CN-LOH mutation, and doublet cells.

Cell Type No. of Cells

Astrocyte 1223

Gabaergic 1170

Glutamatergic 1392

Polydendrocyte 466

Oligodendrocyte 1865

Endothelia 108

Microglia 373

Agreement Disagreement

1196 27

1131 39

1352 40

453 13

1698 167

100 8

351 22

Table 4: For each cell type, the agreement and disagreement between the absolute counts

and allele-specific count classifiers are shown. We see that there is significant agreement

between the two classifiers. Notice that the number of cells for each cell type is different

from the numbers in Table 1 and Table 2. This is because not all cells have both counts

available.

3.3.1 Absolute Count Based Classification

We analyze LO18 absolute count data using the likelihood for absolute count model described

in Sec. 2.1. To get an idea of the variability of the number of counts across cell types for

each chromosome we report their numbers. The number of absolute counts for astrocyte:

the range of chromosome 4 counts is 1-1458, while for chromosome 18 counts it is 1-580;

gabaergic: the range of chromosome 4 counts is 1-2430, while for chromosome 18 counts it is

1-996; glutamatergic: the range of chromosome 4 counts is 1-5705, while for chromosome 18

counts it is 1-1740; polydendrocyte: the range of chromosome 4 counts is 1-1484, while for

chromosome 18 counts it is 1-352; oligodendrocyte: the range of chromosome 4 counts is 1-
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599, while for chromosome 18 counts it is 1-225; endothelia: the range of chromosome 4 counts

is 1-442, while for chromosome 18 counts it is 1-197; microglia: the range of chromosome 4

counts is 1-407, while for chromosome 18 counts it is 1-149. As we remarked it is difficult to

identify ploidy directly from absolute counts due to the significant variability in the count

data resulting in overlaps between counts of anueploid and euploid cells. Recall that we

proposed to use Chromosome 4 as a control since we know that Chromosome 4 is highly

likely to be in euploid state for all cells. Clustering into two clusters for each cell type and

taking their corresponding medians yields the two Binomial parameters pa and pe for the

two biological situations, aneuploid and euploid.

Since these clusters are obtained by clustering the list of test statistics, n4

n4+n18
, where

n4, n18 are the number of cells of a cell type for Chromosome 4 and Chromosome 18, we

expect to see that
pa

1− pa
≈ 2

pe
1− pe

.

in our data. We applied our likelihood model of Sec. 2.1 and classified the cells into aneuploid

and euploid for each cell type. The overall summary of the classified output is reported in

Table 1.

Next, we investigated cells that are classified as aneuploid and euploid. To do so, we

consider a 2D plot with Chromosome 4 count on the x-axis and Chromosome 18 count

on the y-axis by our model (Sec. 2.1). We only plot three cell types because other cell

types follow a similar trend. Our reasoning for the plot is that we should be able to see

a clear separation of the ratio. Intuitively, consider two cells with nearly similar count for

Chromosome 4. However, suppose one of them is aneuploid and the other euploid, we should

see the ratio of Chromosome 18 to Chromosome 4 to be nearly 1/2 when comparing the two

cells. From examining the plots in Figure 3, we see that there are two parts of the data, one

with a trendline with nearly twice the slope as the other’s trendline, just as we theorized,

and thus validating our model. The scatter around the higher-ratio trend line are classified

as euploid cells - those that have two copies of both chromosomes, while the lower trend

line should contain the aneuploid cells - cells with only one copy of Chromosome 18. As

seen in Figure 3 our classifier fully separates the aneuploid cells from the euploid as we see

manifestation of two clear clusterings.
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Figure 3: Absolute Counts classifier results for glutamatergic, polydendrocyte, and oligodendrocyte cells.

The blue cells represent euploid cells, orange represent aneuploid, and green represent cells with an uncertain

ploidy.

3.3.2 Allele-Specific Count Results

Similar to absolute counts, allele specific counts also exhibit significant variability and as

such it is difficult to ascertain ploidy purely from these counts. For astrocyte, the retained

chromosome count range is 0-47, loss is 0-41; gabaergic, the retained chromosome count

range is 0-114, loss is 0-116; glutamatergic, the retained chromosome count range is 0-146,

loss is 0-207; polydendrocyte, the retained chromosome count range is 0-59, loss is 0-28;

oligodendrocyte, the retained chromosome count range is 0-68, loss is 0-56; endothelia, the

retained chromosome count range is 0-16, loss is 0-25; microglia, the retained chromosome

count range is 0-20, loss is 0-15.

In the case of LO18, one of the two alleles is lost and the other retained. This insight

led us to propose the model in Sec. 2.2 where we set pe = 0.5 for the euploid cell since both

alleles are present in equal number, and so a random draw would yield either of the two

alleles with equal probability. On the other hand for an aneuploid cell we set pa = 0.95 since

the retained allele would be drawn with very high probability. Running our model with these
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Figure 4: Allele-Specific Count classifier results for glutamatergic, polydendrocyte, and oligodendrocyte

cells. The blue cells represent euploid cells, orange represent aneuploid, and green represent cells with an

uncertain ploidy.

parameters and thresholding the log-likelihood ratio yields a classification of cells.

Table 2 tabulates results for this model. We see that more cells are declared uncertain

here, and this is to be expected from the fact that allele-specific counts are more noisy.

We next construct a 2D plot to visualize the classified cells. The feature space has

retained chromosome counts on the x-axis and the lost counts on the y-axis. To see that

this makes sense, note that retain counts corresponds to the allele that is predominantly

found in all the cells, and lost corresponds to the allele that are lost in aneuploid cells. As a

result if a cell is in euploid state we expect equal fractions of retained and lost alleles, and a

cell in aneuploid state will consist primarily of the retained allele with no lost allele. Thus

the 2D visualization of the classified cells would have aneuploid cells essentially scattered

horizontally, while the euploid cells are scattered along the 45◦ line.

As we can see from Fig. 4 our proposed allele-specific classifier also separates the aneuploid

and euploid cells well, as the model has labeled all of the cells with counts only on the retained

chromosome as aneuploid, while the cells that have significant counts on both the lost and
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Figure 5: Scores from absolute counts vs scores from allele-specific counts across glutamatergic, polyden-

drocyte, and oligodendrocyte cells. The lines represent the sum of the scores being 2 and -2, so if it is less

than 2 it is euploid and greater than 2 aneuploid. This graph shows that both methods are in tune with one

another, as the counts are mostly in quadrants I and III - so the methods either both detect a cell euploid

or aneuploid. Very rarely does one method call a cell aneuploid and the other diploid.

the retained chromosomes.

3.3.3 Combined Likelihood Results

We have two scores: one based on absolute count likelihood, and the other based on allele-

specific count likelihood. These models are based on different assumptions. The absolute

count is based on a test-statistic that baselines against Chromosome 4, which we assume to

be in euploid state. The allele-specific count is based on a different statistic and assumes

that nature chooses one of the alleles and retains it across all cells, and the other allele is

predominantly lost in all the aneuploid cells. As such the absolute count based classifier tends

to be less noisy (since our absolute-count model requires weaker assumptions to hold). This is

seen in Tables 1, 2 where we see more cells declared as uncertain for the latter. Nevertheless,

both tables demonstrate a consistent pattern across all cell types. We investigate this further
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in Table 4, which depicts the number of cells that both agree on. Note that as seen from

the left side of Table 4 the number of cells for which we have both counts is smaller than

their individual counts, which we attribute to machine read errors. Nevertheless, there

are sufficiently large number of cells for which we have both counts, and we see consistent

agreement between the two classifiers. Indeed, it is surprising to see that we have only a

small number of cells which are differentially classified. To visualize the table we construct

a 2D plot with absolute score against the allele-specific score on the x and y axis and the

results are depicted in Figure 5. Note that cells belonging to the first and third quadrant

imply that the two classifiers agree on a cell being aneuploid or euploid, and it is clear that

both classifiers predominantly agree.

3.4 Cell-by-Cell analysis for CN-LOH Mutations

9q CN-LOH mutations are chromosomal alterations. We have 4 samples of iPSCs as de-

scribed in Sec. 3.2 and the number of cells across the different samples is reported in Table 3.

In this dataset we only have allele-specific count data. Instead of euploid and aneuploid, our

two states are normal and 9q CN-LOH.

Recall from our model in Sec. 2.2 we expect that with chromosomal alterations, in mu-

tated cells one of the two alleles is essentially lost and replaced with the other allele. This

is what happens with CN-LOH mutation, namely, a portion of the ”lost” 9q is replaced by

alleles from the ”retained” 9q. Thus we will again expect to see that in cells with the 9q

CN-LOH mutation, the lost counts will be close to 0, while in normal cells, the counts will

be around the same. This leads to setting the binomial parameter pa = 0.95 for mutated

cells and pe = 0.5 for normal cells. We then run our classification algorithm on the CN-LOH

dataset. In this case we also encounter a number of doublets, which we remove using the

method described in Sec. 2.5. The summary of our results is reported in Table 3. About

12% of the cells are CN-LOH cells across all the samples. Since our model is based on the as-

sumption that the lost alleles are replaced by the retained alleles, a 2D plot similar to that in

LO18 for allele-specific count classification makes sense. The plots here have more doublets

than the Chromosome 18 data, which may skew the data. We see that many points between

the critical masses of the normal and CN-LOH clusters are labeled as one or the other, but

they do not conform to either model. Using the method of detecting them as detailed in

the methods, we can point out the doublets in these graphs (See Figure 6. Removing the

doublets yields the results depicted in Figure 7.

Now the picture is much more clear. Just as in Chromosome 18 loss, we see that there
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Figure 6: Allele-Specific counts for the four 9q CN-LOH samples, with doublets in red. The blue points

represent euploid cells, orange points represent aneuploid, green points represent cells with an uncertain

ploidy, and the red points represent doublets.

is a critical mass of points with almost no counts in the lost chromosome and another mass

with roughly equal counts in both chromosomes. These two clusters are the 9q CN-LOH

and normal cells, and the method correctly identifies these two clusters. This method is not

just restricted to 18 loss.

3.5 Gene-Expression Analysis

Here we will apply our Gene Analysis model (Sec. 2.4) to both the LO18 and CN-LOH

datasets. Our goal is to classify genes that exhibit significant differences from their normal

behavior. Volcano plots [4] are particularly valuable in this context. In a volcano plot, the

X-axis represents the log2 fold change in gene expression, while the Y-axis represents the

negative logarithm of the p-value, reflecting statistical significance. Genes that are downreg-

ulated appear on the left-side of the plot, and in particular we should expect genes associated

with the chromosomal loss to be in this category. These genes provide additional evidence

that there is a potential chromosomal loss. On the right side, potentially in response to chro-
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Figure 7: Allele-Specific counts for the four 9q CN-LOH samples, with doublets removed.The blue cells

represent euploid cells, orange represent aneuploid, and green represent cells with an uncertain ploidy.

mosomal loss, genes on other chromosomes might be upregulated as part of compensatory

mechanisms or other cellular responses. These related alterations would be reflected on the

right side of the plot.

3.5.1 LO18 Analysis

With this in mind, we ran our gene analysis model Sec. 2.4 and plot the genes in Figure 8

that were in the germline deleted region and mosaically deleted region of 18 as well as those

that were not in Chromosome 18:

We expect the Chromosome 18 genes’ expression change to be around 0.5 as Chromosome

18 went from 2 copies to 1. This can be seen in the above plots. Interestingly, we notice

that a significant alteration in expression of trans-chromosomal genes. Thus it suggests that

biological processes and molecular functions changed too.
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Figure 8: Volcano plots for gene expression change and p value in glutamatergic, polydendrocyte, and

oligodendrocyte cells. The blue points represent cells not in Chromosome 18, the orange ones represent cells

in the mosaically deleted region of Chromosome 18, and the green ones represent cells in the germline deleted

region of Chromosome 18. The horizontal line is the bonferroni correction of the data (p = 0.05
n ≈ 10−6)

while the vertical line is x = 0.5. The Chromosome 18 genes straddle this line, as we expect since it lost

half of the copies of the chromosomes. However we see many non-Chromosome 18 genes having significant

expression change, which could mean that biological processes and molecular functions are severely impacted

by this loss.

3.5.2 CN-LOH Analysis

We can perform a similar gene expression analysis on CN-LOH samples. The results are

displayed in Figure 9. Just like with LO18, we can see a large shift in expression change

among the genes not in chromosome 9q. Consequently, CN-LOH mutation has the potential

to drastically alter biological processes and molecular functions in their cells. To understand

this we further investigate the specific genes that consistently differentially expressed next.
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Figure 9: Volcano plots for the four 9q CN-LOH samples’ gene expression change vs p value. The blue

points represent genes not in chromosome 9q and the orange ones represent genes in chromosome 9q. The

horizontal line is the bonferroni correction of the data (p = 0.05
n ≈ 10−6).

3.5.3 Impact of Trans-Chromosomal Regulation under CN-LOH

We used [26] database to locate the genes and [snyder2015gene] for researching biological

processes controlled by these genes. Specifically, our Figure 9 shows consistent significance for

expression of MEG3 located on chromosome 14 and ZNF728, which is located on chromosome

19.

Abnormal expression of MEG3 gene can lead to a variety of problems [19] such as overex-

pression leading to increased cell proliferation, decreased apoptosis, and enhanced epithelial-

mesenchymal transition (EMT). Abnormal expression of the ZNF728 gene in CN-LOH for

iPSCs can have a number of biological impacts, including promoting tumor growth and

metastasis [21]. Interestingly using a different method [21] also found that The paper also

found that ZNF728 overexpression was associated with increased CN-LOH at the ZNF728

locus.
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4 Future Work

In blood we now know that clonality in blood is a risk factor for developing blood cancer

and, more recently, a connection with inflammatory related diseases was established [13].

Similarly we are interested in exploring whether clonality in brains, specifically Chromosome

18 loss, can be linked to neurological diseases that develop with aging. We also know that

the genes EXD3, FANCC, LHX6, SLC46A2, SPTLC1, and TMOD1 are imprinted in 9q [22,

15], so we wish to see how they are affected in these CN-LOH mutations. We also want to

understand why this clonality occurred in the first place. Finally, we plan on using gene

ontology to figure out what biological processes and molecular functions are affected.
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