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Introduction

The Hikita conjecture, stated in [1] is connected with geometry and
representation theory. There are some generalisations, but all of them
conjecture some isomorphism between algebras. Combinatorial objects
we investigate, in some sense, enumerate their bases, and our general task,
loosely speaking, is to find combinatorial bijections. In particular, in this
article, we will formulate and prove parabolic conjecture in combinatorial
form. The advantage of this method over the previously known ones is the
simplicity of the used objects, which means that this fact is accessible to
a larger number of readers as well as it helps to understand the algebraic
theorems better.

As we shall prove combinatorial facts, we only consider the case of
symmetric group, but before more general treatment will be given (in
sections 1 and 2). The core of our article are sections 5 and 6. Sections 3
and 4 are the connecting link between algebra and combinatorics.

Acknowledgements. We are deeply grateful to Dmytro Matvieievskyi,
Vasily Krylov and Do Kien Hoang for suggesting the problem and help-
ful discussions as well as to the organisers of Yulia’s Dream for the
opportunity to participate in this project.
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1 Coxeter groups

1.1 Basic notions

Definition 1. A Coxeter matrix is a matrix with entries in positive
integers or infinity such that the ms,s′ = 1 if s = s′ and ms,s′ = ms′,s ≥ 2
if s 6= s′.

Also let us regard W as the group defined by the generators s(s ∈ S)
and following relation:

(ss′)ms,s′ = 1 (1)

Denote (W,S) as a Coxeter group (or a Coxeter system).
For all w ∈ W let us l(w) be the smallest integer q ≥ 0 such that

w = s1s2...sq, where s1, s2, . . . sq ∈ S. We say that l(w) is length of the w
and that s1s2 . . . sq is a reduced expression.

Also let us consider a set of all such sequences (s1, s2, . . . sq) (denote
it as X) that s1s2 . . . sq is a reduced element in W . We regard X as
the vertices of a graph in which (s1, s2, . . . sq), (s

′
1, s
′
2, . . . , s

′
q′) are joined

if one of them can be obtained from the other one by replacing m
consecutive entries of the form s, s′, s, s′, . . . by the m entries s′, s, s′, s, . . .
where s 6= s′ are such that m = ms,s′ < ∞. We use the notation
(s1, s2, . . . sq) ∼ (s′1, s

′
2, . . . s

′
q) for (s1, s2, . . . sq), (s

′
1, s
′
2, . . . s

′
q) which are in

the same component in X. The main property of this graph is that is
(s1, s2, . . . sq) ∼ (s′1, s

′
2, . . . s

′
q) if and only if q = q′.

1.2 Coxeter-Dynkin diagrams

Consider a graph with the set of vertices in bijection with S where the
vertices corresponding to i 6= j are joined by an edge if mi,j = 3, by a
double edge if mi,j = 4, by a triple edge if mi,j = 6 and by a quadruple
edge if mi,j =∞. We call this graph a Coxeter graph.

We will say that graph is irreducible if this graph is connected. Clearly,
W always can be divided into a several irreducible Coxeter graphs. Also
we will call all graphs integral if ms,s′, s 6= s′ is equal only to 2,3,4,6 or
∞. In fact, there are only nine types of finite, irreducible and integral
Coxeter graphes (they are often called Dynkin diagrams). We will later
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identify such of them that are pictured below using another approach to
Coxeter groups.

Type An: • • • • •
Note, that there is an obvious bijection between vertices of graph An

and simple transpositions in symmetric group.
Type Cn: • • • • •

Type Dn:

• • • • •

•

1.3 Basis interpretation

Let E be an R-vector space with basis (es), s ∈ S. For s ∈ S define a
linear map σs : E → E by σs(es′) = es′ + 2 cos π

ms,s′
es for all s, s′ ∈ S.

It can be shown that Φ defined as σsσ
′
s induces the identity map, so

Φ : E → E has order m = ms,s′ if s 6= s′ so ss′ has order ms,s′ in W .
In particular, Coxeter matrix is uniquely determined by Coxeter system
(W,S).

In type An we define S as a basis (e1− e2, e2− e3, . . . en− en+1), so W
is a set of vectors in which some coordinates are rearranged, therefore a
bijection between basis elements and simple transpositions in a symmetric
group Sn+1 exists. In type Dn we define S as a basis (e1 − e2, e2 −
e3, . . . en−1− en, en−1 + en), so W is a set of vectors in which even amount
of coordinates are multiplied by (−1) and then rearranged and in type
Cn we define S as a basis (e1 − e2, . . . en−1 − en, en) and then W will be
the set of vectors in which some coordinates are multiplied by (−1) and
then rearranged.

It can be verified that this definitions correspond to pictured diagrams,
where their vertices correspond to basis elements.
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2 On cells

2.1 Hecke algebra

Let (W,S) be a Coxeter system and S is indexed with a set I with a
Coxeter matrix (mij). Then, the group has a presentation

W =
〈
si, sj ∈ S

∣∣ (sisj)
mij = 1

〉
.

As mii = 1 and mij = mji we can rewrite the relations in the following
way:

s2i = 1, sisjsi . . . = sjsisj . . .

where both sides have mij factors. Now, we can ‘deform’ (parametrize, i.e.
something like a q-analog) the first identity to s2i = (q− 1)si + q for some
indeterminate q. Now, we can define Hecke algebra, but first, we extend
our definition a little bit. We assign a weight to each element using a map
(called weight function) L : W −→ Z such that L(uv) = L(u) + L(v) for
all elements u, v such that `(uv) = `(u) + `(v). Then, a tuple (W,S, L)
is called a weighted Coxeter group. Let R be a ring Z[q, q−1] of Laurent
polynomials (in the theory of Kazhdan-Lusztig polynomials, we extend it
to Z[q−1/2, q1/2]).

Definition 2 ((Iwahori-)Hecke algebra). Let H be an associative R-
algebra given by generators {Ti}i∈I with subject of the relations:

• TiTjTi · · · = TjTiTj . . . (where both sides have mij factors) for any
i 6= j and mij <∞ (braid relation),

• (Ti + 1)(Ti− qL(si)) = 0 (quadratic relation). For unweighted groups,
it becomes T 2

i = (q − 1)Ti + q.

2.2 Cellular algebras

2.2.1 General motivation and definition

It turns out that H is free as an R-module with basis {Tw}w∈W (standard
basis). However, this fact is not trivial and an interested reader may
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refer to [3]. Yet, there is another basis, called Kazhdan-Lusztig, with
very noticeable and useful properties, however, it is too cumbersome to
introduce it here, so we again again leave a reference to [3]. One of the
most essential properties of this basis is that it is cellular.

Let R be a commutative ring with unity, and A be an associative free
(as a R-module) R-algebra with a basis {Ci}i∈I . We introduce a relation
i ←L j if there exists a ∈ H such that [Ci]aCj 6= 0 (a coefficient of Ci
in aCj). We take a transitive closure i ≤L j (if there exists a sequence
i ←L · · · ←L j). Next, we naturally introduce an equivalence i ∼L j
(when i ≤L j and j ≤L i). Then, (the equivalence classes) I/ ∼L are
called left cells. Similarly, one can define right and two-sided cells.

2.2.2 Cellular basis

Using definition of relation ≤L, one can write

aCx =
∑
y≤Lx

h(y, x)Cy,

where h(y, x) ∈ R. This identity shows that H(≤L x) (linear span of Cy
such that y ≤L x) is a left ideal. Also, it is easy to show that H(<L x) is
also a left ideal. So, we can consider H(≤L x)/H(<L x), where

aCx =
∑
y∼Lx

h(y, x)Cy (mod H(<L x)).

Such a module is called a cell module. Using that motivation, now we
define cellular basis as follows.

Definition 3 (Cellular basis). Let A be a free associative R-algebra. Also,
introduce Λ, a finite poset, and associate a finite set (of indices) M(λ)
with each λ ∈ Λ. We also assume that there exists a basis {Cλ

P,Q ∈
A | P,Q ∈M(λ)}. This basis is cellular if

• R-linear map (.)∗ given by (Cλ
P,Q)∗ = Cλ

Q,P is an anti-involution in
A,

• for any a ∈ A it holds that

aCλ
P,Q =

∑
P ′∈M(λ)

h(P, P ′)Cλ
P ′,Q′ (mod H(<L λ)).
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for some h(P, P ′) ∈ A and depending only on indices P and P ′.

It turns out that a Kazhdan-Lusztig basis is cellular for a Hecke
algebra. In general, such cellular algebras (that is algebras which have
a cellular basis) behave well in representation theory. For an original
article, see [5].

In addition, Hecke algebras actually have a lot of interesting interpre-
tations in geometry and algebra. For example, see the introduction in [3]
for a quick survey on how Hecke algebras arise from reductive algebraic
groups.

2.2.3 Semi-regular cells

Consider a Coxeter group (W,S) (i.e. a symmetric group), and let C be a
set of elements w ∈ W with the unique reduced expression. Furthermore,
we split C into disjoint sets

C ⊃ Cs =
{
w ∈ W | ws — reducible

}
.

It can be proved that C is a two-sided cell, as well as {Cs}s∈S are left cells
(with respect to the Kazhdan-Lusztig basis), see [6].
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3 RSK-correspondence and its variations

3.1 Row bumping algorithm

Robinson-Schensted correspondence gives the combinatorial bijection
between permutations and pairs of standard Young tableaux of the fixed
(for a particular permutation) shape, that is∑

λ∈YN

YT(λ)2 = N !,

where YN is a set of all Young diagrams of size N and YT(Shape) is the
number of Young tableaux of a shape Shape.

For π ∈ Sn the algorithm is

1. P0, Q0 are empty tableaux.

2. Pi = Pi−1 ← πi (by row bumping, defined just below), add a new
cell of Pi with entry i to Qi.

3. Return (Pn, Qn).

Insertion is usually denoted as T ← x, where T is a tableau and x is
a value we insert. The row bumping algorithm looks the following way:

1. Keep a coordinate pair (i, j), initially set to (1, k + 1) where k is
the first row’s of T length.

2. Find the first square in i-th row with an entry larger than x (or no
such an entry), for example, by running a cycle ‘while j > 1 and
x < Ti,j−1’.

3. If (i, j) is empty, add it with x. Otherwise, swap x and Ti,j, go to
the next row (increase i by one) and return to second step.

In result, we obtain two tableaux P and Q, which are of the same
shape and which pair is unique for any permutation π (for proof, we refer
to [2]).
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3.2 Construction géométrique de Viennot

One of the most notable properties of Robinson-Schensted is so called
inversion theorem, which states that if π ∼ (P,Q), then π−1 ∼ (Q,P ).
The simplest proof uses construction géométrique de Viennot, see [4].
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4 Conjugacy classes

4.1 Stabilizer and Q-orbit

4.1.1 Vector vλ

From now and further we will work only with the case of the symmetric
group Sn. We assign a vector vλ to any partition λ of a specific form.

Definition 4 (Vector vλ). Let N = λ1 + · · · + λn be a partition (λ1 ≥
· · · ≥ λn) such that all the summands have the same parity. We construct
an auxiliary vector

vaux = (Bl(λ1), Bl(λ2), . . . , Bl(λk))

where Bl(a) = [−(a − 1)/2; (a − 1)/2] ∩ Z for an odd a and Bl(a) =
[−a/2; a/2] ∩ (Z + 1/2) for an even a. Then vλ is a sorted (in the
increasing order) version of vaux.

4.1.2 The longest elements

Of course, Sn acts on vλ, permuting its coordinates. So, we can consider
a stabilizer Stab(vλ) ⊂ Sn (all the subgroups of this form are so-called
parabolic subgroups) which fixes vλ. It is clear that,

Stab(vλ) =

(λ1−1)/2∏
x=−(λ1−1)/2

Sym(cntvλ(x)) (2)

where cntv(x) equals the number of occurences of x in v.
Then, consider cosets σStab(vλ) (where σ ∈ Sn). We take the longest

element wλ
0 (σ) (proved in 4.3.2) of each class and obtain a set Orb(vλ):

Sn/Stab(vλ)
wλ0−−−−−→ Orb(vλ)

or, in other words, Orb(vλ) = {wλ
0 (σ)}σ∈Sn.
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4.2 The problem statement

4.2.1 Left-cell definition

Now, let wλ
0 := wλ

0 (id). We introduce a subset of Orb(vλ) of elements
which lie in the same left cell as wλ

0 :

QOrb(vλ) =
{
w | ∃σ : w = wλ

0 (σ), w ∼L wλ
0

}
.

The question, now, is to establish a combinatorial bijection between the
QOrb(vλ) and the set of Young tableaux of the form λ:

QOrb(vλ)
?←→ YTableau(λ).

4.2.2 Purely combinatorial version

The most crucial tool here is that we can describe cells in the case of
symmetric groups purely combinatorially: if u, v ∈ Sn, then

• u ∼L v if, and only if Qu = Qv.

• u ∼R v if, and only if Pu = Pv.

For proof see [2]. So, in fact,

QOrb(vλ) =
{
w | ∃σ : w = wλ

0 (σ), Qw = Qw0

}
,

which, of course, is much handier.

4.3 Centred diagrams

4.3.1 General definitions

We take a partition λ from paragraph 4.1.1 (parity of each summand is
odd). Then, essentially, the centred diagram CT λ is nothing but a Young
diagram of the partition centred by the ‘central’ (that is, (a−1)/2 for a row
of length a) cell. A centred tableau is a centred diagram where numbers
1, . . . , n are written in the cells (with no additional requirements). Hence,
the centred tableaux is just another way of representing a permutation in
Sn.
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There are two natural directions: vertical and horizontal. When we fill
a tableau, we can also write a direction (vertical, by default) like CTh(σ);
that is, we insert values of σ of its one-line notation one by one, filling first
row, second row and so on; in CTv(σ) we first fill the first column, then
the second, and so on. This notation allows us to consider transformations
of a permutation σ of form Projv(CTh(σ)) (fill the diagram with σ by
rows and then read it by columns). See figure 1.

1 2 3 4 5

6 7 8

9

10

h

v 

Figure 1: The picture shows CTh(id) for 10 = 5 + 3 + 1 + 1. Here, for
example, Projv(CTh(id)) = (1, 2, 6, 3, 7, 9, 10, 4, 8, 5) (we read in vertical
direction).

We can also interpret the vector vλ with a similar construction: we
index columns such that the central one is zero, left ones have negative
index and right ones have positive; then, assign an index of the column
to each cell and read it by rows.

4.3.2 Stabilizer and orbit

It’s clear from the definitions that elements of stabilizer are just per-
mutations inside columns (look at (2)). Moreover, each conjugacy class
σStab can be described by first swapping some cells (action of σ) and
then applying Stab action (i.e. permuting inside columns).

We can describe Orb as well, that is find how the longest elements
look like. Using that the length of reduced expression is equal to the
number of inversions in a permutation, we conclude that the longest
element in σStab (recall its description using centred tableaux) has all

14



1 3 7 9 10

2 6 8

5

4

-2 -1 0 1 2

Figure 2: Here, the longest element in Stab is presented (one can obtain
the permutation by reading the tableau vertically). Arrows mean that
any element of Stab can be obtained by permutating there.

the columns (decreasingly) sorted, that is all the subpieces (recall formula
(2)) maximise the number of inversions. For example, we can use this
to prove that Shape(Qw0(id)) = λ. It is very easy to understand how
the row bumping algorithm works: it simply adds each column (of the
centred tableau, in descending order), thus bumping all previous cells
from the column (and only them) up. But the new elements are always
larger than the previous ones, so nothing else is pushed and the Q-symbol
is just as if we were adding columns to the table layer by layer.

Finally, we can find sizes of Stab(vλ) and Orb(vλ) using the column’s
heights h−k, . . . , hk (where k = (λ1 − 1)/2) of the centred diagram of λ,
as follows:

|Stab(vλ)| = h−k! . . . hk!,
|Orb(vλ)| = n!/(h−k! . . . hk!).
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5 The combinatorial bijection

5.1 Inversion trick

5.1.1 The reformulation of the problem

To prove the problem statement it is sufficient to prove the following fact:

Proposition 1. All elements with Q-symbol coinciding with Qw0 are the
longest in their left cells.

Let us formulate a main fact that is equivalent to the previous one:

Proposition 2. All elements with P -symbol coinciding with Pw0 are the
longest in their right cells.

In 5.2 we will prove the second proposition, which will be sufficient to
prove the main fact.

5.1.2 Proof of the equivalency of propositions

Consider the bijection M : Sn → Sn, which maps the elements to their
opposites. Since if w ∼ (P,Q) under the Robinson-Schensted correspon-
dence then w−1 ∼ (Q,P ), so the left cells move to right cells, and vice
versa, because σ ∼R σ ◦ S ⇐⇒ σ−1 ∼L S−1 ◦ σ−1, and S−1 is also a
stabilizer element. So, if the element in the considered right cell was the
longest and its P -symbol coincided with Pw0, then its image Q-symbol
coincides with Qw0. This consequence is justified by the fact that on this
mapping the longest element of the stabilizer maps to itself, since the
image of the stabilizer is the stabilizer and the length is conserved, hence
Pw0 and Qw0 coincide. The equivalence of the propositions is proved.

5.2 Q-symbols

Let the given number N = λ1 + λ2 + · · ·+ λn, λi ≡ 1 (mod 2), and the
vector, corresponding to it is vλ = (−t,−t, . . . ,−t,−(t − 1), . . . ,−(t −
1),−(t− 2), . . . , (t− 1), t, . . . , t). Let m be the last appearance of km in
the vector. Then w0 looks as follows:

w0 =
(
k−t, k−t − 1, . . . , 1, k−(t−1), . . . , (k−(t−1) − k−t + 1), . . . , (kt − kt−1 + 1)

)
.
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Consider its P -symbol.

Figure 3: P-symbol.

Consider an arbitrary element with such P -symbol. Split the vector
into blocks of identical numbers. Since the inversions between numbers
in two different fixed blocks do not depend on the order of numbers in
them, it is sufficient to prove that each block has the largest number of
inversions, that is, the numbers there go in reverse order of the original
one.

Observe that each column of P -symbols corresponds to one block of
identical numbers in the vector. Since the larger number in the column
is strictly below the smaller one, it occurred earlier in the vector, which
means that the order of numbers in the block is reversed. This reasoning
completes the proof.
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6 Parabolic Hikita Conjecture

6.1 Diagrams

Fix two centred Young diagrams λ and µ. Fill them with numbers in
these ways:

Filling µ: In cells of the first column of µ, we put 1s, in the second column
– 2, in the third – 3, . . . , and k in the last one, and also for each
number which is not unique in its column we set an index of its
row, for instance:

Filling λ: We put numbers from µ in λ such that the smaller number is always
to the left and above the larger number (not strictly), and the same
numbers are always in distinct columns, and the numbers with
smaller index is always to the left with the larger number. Further,
if we sort numbers in the increasing order by the number itself first
we can put numbers sequentially:

The resulting tableau is considered as P -symbol of some permutation
w1. We construct its Q-symbol similarly to the previous problem, that is
as in figure 3. We define the set of permutations which we can obtain by
setting Q-symbol to be W1.

6.2 Vectors

We construct vectors vλ and vµ by initial Young diagrams as in the
previous problem. Let stabilisers of these permutations be Sλ and Sµ,
respectively.

18



Proposition 3. If for fixed diagrams λ and µ there exists a permutation
w such that an orbit {g2 ◦ w ◦ g1|g1 ∈ Sλ, g2 ∈ Sµ} is free and w is the
longest element in w ◦ Sλ and the shortest element in Sµ ◦ w, then w is a
unique element of the orbit that satisfies these properties.

We shall prove this proposition in 6.6.
Let W2 be the set of such permutations w with a fixed Q-symbol.

Theorem 1 (The Main Problem). The sets W1 and W2 are equal.

We shall prove that W1 ⊂ W2 and W2 ⊂ W1.

6.3 Permutation w is the longest in w ◦ Sλ.
From the previous problem, we know that our choice Q-symbol is equiva-
lent to the fact that w is the longest in w ◦ Sλ.

6.4 Orbit of w is free

We have to prove that orbits of all permutations from W1 are free. First,
we prove the following auxiliary proposition.

Proposition 4. The set of consecutive equal numbers of vector vλ is
called block. Blocks of vµ are defined in the same way. Then the orbit of
w is free if and only if w sends a number from each block of vλ to distinct
blocks of vµ.

Proof. The condition is necessary because stabilisers can permutate only
numbers inside a single block.

Now we shall prove that if w moves two numbers from a block of vλ to
two numbers of a single block of vµ, then the orbit of w is not free. Indeed,
let positions of these elements in vλ are a1 and a2 and w maps then into b1
and b2, respectively. Then take g1 = (a1, a2) ∈ Sλ and g2 = (b1, b2) ∈ Sµ.
Then g2 ◦ w ◦ g1 = w, so we reached contradiction.

We shall also use the following proposition.

Proposition 5. Reading P -symbol of w ∈ W1 by columns upside-down
from left to right, we obtain w.
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Proof. Consider first columns of P - and Q-symbols of w ∈ W1. Let them
contain n cells. We know numbers of the first column of P -symbol, so we
surely know which number was the first in w and knowing Q-symbol, we
understand that further we have decreasing sequence of n− 1 numbers
and again from the first column of P -symbol we know exactly which
numbers they are the further n − 1 numbers of w could be only upper
number of the first column of P -symbol, that is first n numbers of w are
written in the first column of its P -symbol reading upside-down. We can
do this argument for all other columns.

We immediately obtain the following corollary.

Corollary 1. The numbers in a column of P -symbol of w ∈ W1 are
numbers of positions into which w sends the number of the block that
corresponds to this column.

The final ingredient is the following:

Proposition 6. In the initial statement of the problem, vµ can be replaced
with v′µ such that each number is equal to the number of its block and the
index of this number is equal to the position of this number in its block.
It saves all considered properties of vµ.

This proposition is obvious, albeit useful because now elements of vµ
are numbered via numbers from the filling of µ.

We recall that there is no column of the initial filling of λ such there
are no two elements from one column of µ, and therefore all elements from
each block vλ were sent into different blocks of vµ which, by proposition
4 means, that the orbit of w is free, what we wanted to prove in this
subsection.

6.5 Permutation ω is the shortest in Sµ ◦ ω.
Now let us consider an arbitrary block v′µ. We know that in diagram λ
numbers from this block are in the different columns, and number from
column λ with smaller index is always going on to a number with smaller
index. That fact and the statement 3 mean that after the permutation ω
for all blocks vµ there cannot be any new inversions between the numbers
from the the same block, so ω is the shortest one in Sµ ◦ ω, q.e.d.
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And now we want to prove that converse statement is also true, that
is the permutation ω ∈ W2 has P−symbol which can be received by
algorithm which was described in section 1.1.

Consider the following operation: at first we sort numbers from µ
by ascending and then replace numbers from λ for those which are
corresponding to a number with an index which are on the corresponding
for them places (in fact, this operation is reverse to the algorithm from
section 1.1, which replace numbers from µ in λ to a consecutive natural
numbers). Now suppose that after this operation there are two numbers
with the same number and different index in one column. From the
statement 3, at first they were in the same block, and from the statement
4 now there are also in the same block, so we get a contradiction with
the statement 2. Therefore, ω has required P-symbol, q.e.d.

6.6 Proof of the proposition 3.

Suppose that permutation ω∗ = g∗2 ◦ω◦g∗1, which lies in orbit ω ∈ W1, also
lies in W1. Notice, that permutation ω ◦ g∗1 in vector vλ only permutate
numbers in different blocks, therefore ω ◦ g∗1 ∈ Sλ. So, ω ◦ g∗1 match the
same numbers in vλ to a different blocks vµ (ω has a free orbit), therefore
in each block vµ a set of numbers from vλ which were gone in this block
coincides with the set of all such numbers from ω. But ω∗ is the shortest
element in orbit {g2 ◦ ω∗ | g2 ∈ S2}, so the order of numbers in blocks vµ
also was not changed, therefore g∗2 = id. Then, ω∗ = ω ◦ g∗1, and it can
be the longest one in orbit {ω∗ ◦ g1 | g1 ∈ S1} only if g1 = id, because
in another case ω will be longer. So, ω∗ = ω, and we prove that ω∗ lies
in W1 only if ω∗ = ω, therefore ω is the unique permutation in it’s orbit
which satisfies condition, q.e.d.
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