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Abstract

We examine several types of visibility graphs: bar and semi-bar k-visibility graphs,

rectangle k-visibility graphs, arc and circle k-visibility graphs, and compact visibility

graphs. We improve the upper bound on the thickness of bar k-visibility graphs from

2k(9k − 1) to 6k, and prove that the upper bound must be at least k + 1. We also

show that the upper bound on the thickness of semi-bar k-visibility graphs is between

d23(k + 1)e and 2k. In addition, we give a method of finding the number of edges in a

semi-bar k-visibility graph based on skyscraper puzzles. Analogous to bar and semi-bar

k-visibility graphs, we establish bounds on the number of edges, chromatic number,

and thickness of rectangle k-visibility graphs; as well as bounds on the number of edges

and the chromatic number of arc and circle k-visibility graphs. Finally, we relate two

conjectures on compact visibility graphs, prove that every n-partite graph in the form

K1,a1,a2,...,an−1 is a compact visibility graph, and classify all (but one) graphs with at

most six vertices as compact visibility graphs.
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1 Introduction

Many problems, such as wiring thousands of transistors together on the same chip, called Very

Large Scale Integration (VLSI), navigating a robot through a set of obstacles, or establishing

a temporary military base out of sight of an enemy base, stem from the basic problem

of when some objects are visible to other objects. We can use the concept of a graph to

mathematically model these scenarios in the following way: each vertex, visualized by a

point, in the graph corresponds to an object in the system, and two vertices are connected

by an edge, visualized by a line, whenever their corresponding objects are visible with respect

to each other. These graphs are called visibility graphs. The above scenarios have different

restrictions on the shape of the objects, and when two objects are determined to be visible.

This gives rise to several different types of visibility graphs. In this paper, we study five types

of visibility graphs, relating to bar visibility, semi-bar visibility, rectangle visibility, arc/circle

visibility, and compact visibility. We also study the related problem when objects are able

to see through exactly k other objects for some positive integer k. These visibility graphs

are known as bar, semi-bar, rectangle, and arc/circle k-visibility graphs.

To discuss this topic while maintaining mathematical rigor, we must give a formal defi-

nition of visibility:

Definition 1.1. Given a collection of n pre-determined sets of points {S1, S2, . . . , Sn}, there

exists a sightline ` between two sets Sj and Sk if the endpoints of ` are in Sj and Sk and

` ∩ ∪ni=1Si only has two points in it. Two regions are then said to be visible with respect to

each other if there exists a sightline between them.

Two concepts that figure heavily in our discussion are the notions of the thickness and

the chromatic number of graphs.

Definition 1.2. The thickness Θ(G) of a graph G is the minimum number of planar sub-

graphs whose union is G. That is, Θ(G) is the minimum number of colors needed to color
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the edges of G such that no two edges with the same color intersect.

The thickness of a bar, semi-bar, or rectangle visibility graph is intimately related to

VLSI. VLSI circuits are built in layers to avoid wire crossings which disrupt signals [8]. For

each graph G with vertices corresponding to circuit gates and edges corresponding to wires,

the thickness of G gives an upper bound on how many layers are needed to build the VLSI

circuit.

Definition 1.3. The chromatic number χ(G) of a graph G is the minimum number of colors

needed to label the vertices of G such that any two adjacent vertices receive different colors.

The chromatic number is related to the problem of scheduling, where there are several

jobs corresponding to vertices and pairs of jobs which cannot be completed at the same time

corresponding to edges. By letting each color represent a distinct valid time slot, any coloring

of the graph provides a valid schedule for the jobs and the chromatic number provides the

minimum number of necessary time slots.

Dean et al. [2] previously placed upper bounds on the number of edges, the chromatic

number, and the thickness of bar k-visibility graphs with n vertices in terms of k and n.

Felsner and Massow [4] tightened the upper bound on the number of edges on bar k-visibility

graphs and placed bounds on the number of edges, the thickness, and the chromatic number

of semi-bar k-visibility graphs. Hartke et al. [7] found shar upper bounds on the maximum

number of edges in bar k-visibility graphs.

Lin, Lu, and Sun [9] determined an algorithm for plane triangular graphs G with n

vertices which outputs a bar visibility representation of G no wider than b22n−42
15
c in time

O(n). Bar ends were on grid points in their model. Bose et al. [10] defined rectangle visibility

graphs with horizontal and vertical visibility lines and proved several classification results

about them. Hutchinson [5] defined and proved results on the structure of arc and circle

visibility graphs, in which visibility lines are subsegments of diameters. Develin et al. [6]
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proved several statements on the structure of compact visibility graphs and formulated a

conjecture about their general structure.

In Section 3, we improve the upper bound on the thickness of bar k-visibility graphs from

the old bound proven by Dean et al. [2], and show a lower bound on the maximal thickness.

Furthermore we improve the bounds on the thickness of semi-bar k-visibility graphs and

rectangle k-visibility graphs We also show a method to count the number of edges of any

semi-bar k-visibility graphs. Finally, we use the previous results to bound the thickness of

rectangle k-visibility graphs. In Section 4, we place upper bounds on the number of edges

and the chromatic number of arc and circle k-visibility graphs. In Section 5, we show that

two open problems on the structure of compact visibility graphs conflict, and we show that a

specific infinite class of graphs are all compact visibility graphs. Finally, we classify (nearly)

every compact visibility graph with six or fewer vertices, and a comprehensive list of graphs

is in Appendix A. Section 6 poses several open questions based on work in this paper.

2 Preliminaries

In this section, we define the various types of visibility graphs, and cover conditions we

assume throughout the paper.

2.1 Bar visibility graphs

Bar visibility graphs are graphs that have the property that the vertices of the graph cor-

respond to the elements of a given set of horizontal bars in such a way that two vertices of

the graph are adjacent whenever there exists a vertical sightline between their corresponding

line segments. The set of bars is said to be the bar visibility representation of the graph. This

type of visibility graph was introduced in the 1980s by Duchet et al. [1] and Schlag et al. [3]

mainly for its applications in the development of VLSI. Figure 1 gives an example of a set
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of horizontal line segments and its corresponding bar visibility graph. Sightlines are drawn

as dashed lines.

Figure 1: A bar visibility graph and its bar visibility representation.

Sometimes the requirement that the sightline must be a non-degenerate rectangle is

added. This definition produces bar ε-visibility graphs. Though we only consider bar visibility

graphs with sightlines only as line segments, usually called strong bar visibility graphs, we

make the following assumption while bounding the thickness of bar k-visibility graphs:

Assumption 2.1. If two endpoints of the bars have the same x-coordinate, we can elongate

one of the bars by some real number ε such that no edges are deleted, and hence the thickness

does not decrease, so we assume that the endpoints of the bars have different x-coordinates.

This assumption ensures that the bar visibility graphs that we consider are all bar ε-visibility

graphs. This assumption can also be extended to semi-bar k-visibility graphs.

Dean et al. [2] recently extended the definition of bar visibility graphs, by adding the

condition that sightlines are allowed to pass through at most k additional bars. These graphs

are called bar k-visibility graphs. Figure 2 shows an example of a bar 1-visibility graph with

a bar 1-visibility representation equivalent to the one in Figure 1. For convenience, sightlines

that pass through an additional bar are drawn thicker than the original sightlines.

2.2 Semi-bar visibility graphs

We also study semi-bar k-visibility graphs. A semi-bar k-visibility graph is a bar k-visibility

graph where the left endpoints of all the bars have x-coordinates equal to 0.
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Figure 2: A bar 1-visibility graph and its bar 1-visibility representation.

These types of visibility graphs will be covered in Section 3, where we improve an old

upper bound of 2k(9k − 1) on the thickness of bar k-visibility graphs, found by Dean et

al. [2], to 6k, by using a method similar to that developed by Felsner and Massow [4] for

bounding the thickness of semi-bar k-visibility graphs. We also show that there exist bar

k-visibility graphs with thickness at least k+ 1. Afterwards, we prove an upper bound of 2k

on the thickness of semi-bar k-visibility graphs, while we also show that there exist semi-

bar visibility graphs with thickness at least
⌈
2
3
(k + 1)

⌉
. Finally, we give a method to count

the number of edges of a semi-bar k-visibility graph based on the structure of its semi-bar

k-visibility representation.

This method is inspired by skyscraper problems. Skyscraper puzzles are grids of integers

in which the integers correspond to the heights of semi-bars in a grid visibility representation.

A skyscraper puzzle consists of an empty n × n grid with numbers written left or right of

some rows and above or below some columns. The solver fills the grid with numbers between

1 and n representing heights of skyscrapers placed in each entry of the grid. The numbers

are placed so that no two skyscrapers in the same column or same row have the same height.

If there is a number m above a column in the empty grid, then the numbers 1, . . . , n must

be placed in that column so that there are m numbers in the column which are greater than

every number above them. If there is a number m below a column in the empty grid, then

the numbers 1, . . . , n must be placed in that column so that there are m numbers in the

column which are greater than every number below them. The restrictions for the numbers
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in rows are defined analogously. Then each number m outside the grid corresponds to the

number of visible skyscrapers in the row adjacent to m which are visible from the location

of m if sightlines are parallel to the ground.

We consider a visibility representation based on skyscraper puzzles in which there is just

a single column in which to place numbers, some of which may be the same, and there

are possibly numbers above or below the column. Any such configuration corresponds to a

semi-bar visibility graph. Any numbers above (resp. below) the column are the number of

semi-bars which are longer than all semi-bars above (resp. below) them.

In Section 3 we show how to count the number of edges in any semi-bar visibility graph by

using the numbers above and below the column in its skyscraper configuration. Furthermore

we extend the skyscraper analogy to k-visibility graphs to show a similar result for semi-bar

k-visibility representations.

2.3 Rectangle visibility graphs

A less restrictive version of the bar visibility graph is the rectangle visibility graph, whose

vertices correspond to elements of a given set of rectangles with sides all either horizontal or

vertical, and two vertices of the graph are adjacent whenever there is a vertical or horizontal

sightline between their corresponding rectangles. Bose et al. [10] examined rectangle visibility

graphs, and proved several statements about their structure. In this paper, we extend the

definition to create the notion of rectangle k-visibility graphs, where sightlines are allowed to

intersect at most k additional rectangles. We extend the results proven for bar and semi-bar

k-visibility graphs to find an upper bound on the number of edges of rectangle k-visibility

graphs, and show that the chromatic number is at most 12k + 12 and the thickness is at

most 12k.
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2.4 Arc and circle visibility graphs

An interesting extension of bar visibility graphs is the concept of arc visibility graphs, in-

troduced by Hutchinson [5]. She defines a non-degenerate cone in the plane to be a 4-sided

region of positive area with two opposite sides being arcs of circles concentric about the

origin, and the other two sides being (possibly intersecting) radial line segments. Two con-

centric arcs a1 and a2 are then said to be radially visible if there exists a cone that intersects

only these two arcs, and whose two circular ends are subsets of the two arcs. A graph is then

called an arc visibility graph if its vertices can be represented by pairwise disjoint arcs of

circles centered at the origin such that two vertices are adjacent in the graph if and only if

their corresponding arcs are radially visible. Circle visibility graphs are defined in nearly the

same way, with the difference that vertices can be represented as circles as well as arcs. Note

that all arc visibility graphs are also circle visibility graphs. Figure 3 shows an arc visibility

graph and its arc visibility representation.

Figure 3: An arc visibility graph and its arc visibility representation.

We also examine arc k-visibility graphs and circle k-visibility graphs, where cones are

allowed to see through k additional arcs and circles. Figure 4 shows the arc 1-visibility graph

of the arc visibility representation shown in Figure 3.
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Figure 4: An arc 1-visibility graph and its arc 1-visibility representation.

Remark 2.2. It immediately follows by definition that all bar k-visibility graphs are also arc

k-visibility graphs, and it is a relatively simple task to generate an arc k-visibility represen-

tation from a bar k-visibility representation.

When considering arc and circle k-visibility graphs, we make two assumptions, the first

of which is analogous to the assumption made for bar k-visibility graphs in Section 1.1.

Assumption 2.3. Each arc can be expressed as a set of polar coordinates {(ri, α) : αi,1 ≤

α ≤ αi,2} for some positive ri and some radian measures αi,1 and αi,2 in the interval

(−2π, 2π) with 0 < αi,2 − αi,1 < 2π. We call the coordinates (ri, αi,1) and (ri, αi,2) the

negative and positive endpoints of arc ai, respectively. If two endpoints of two arcs have

the same angular coordinate, then we can lengthen one slightly without deleting edges in the

arc k-visibility graph, so we assume that no two arcs have endpoints with the same angular

coordinate.

Assumption 2.4. If there are two arcs that are the same distance from the origin, then we

can slightly increase the radius of one so that their radii are different without affecting the

arc k-visibility graph. Therefore we also assume that no two arcs are the same distance away

from the origin. We then label the arcs with a1, a2, . . . , and an, where ai is given to the arc

with the ith greatest radius.
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In Section 4 we establish an upper bound of (k+ 1)(3n− k− 2) on the number of edges,

and an upper bound of 6k + 6 on the chromatic number of circle k-visibility graphs.

2.5 Compact visibility graphs

One of the most general types of visibility graphs is the compact visibility graph. Compact

visibility graphs are graphs that can be represented as a set of compact connected regions in

the plane (a region in the plane is compact if it is both closed and bounded). The set of regions

that generate a compact visibility graph is called the compact visibility representation of the

graph. Here there are no directional restrictions on the sightlines. These types of visibility

graphs are used to model physical problems, such as navigating a robot through a set of

obstacles. Figure 5 shows several regions and the corresponding visibility graph.

Figure 5: A compact visibility graph and its compact visibility representation.

The restriction that the regions must be convex can be added, to produce the notion of

convex compact visibility graphs. Develin et al. [6] formulated restrictions on the structure

of these two types of visibility graphs, and posed several open conjectures. In Section 5, we

relate two of these conjectures by showing that they contradict, and we show that every

n-partite graph of the form K1,a1,a2,...an−1 is a compact visibility graph. Finally, we classify

compact visibility graphs with 6 or less vertices with the exception of one graph, with a

comprehensive list of graphs and representations in Appendix A.
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3 Bar, Semi-Bar, and Rectangle k-Visibility Graphs

3.1 Bar k-visibility graphs

Dean et al. [2] showed that the thickness of any bar k-visibility graph Gk is at most 2k(9k−1)

by coloring the edges based on a vertex-coloring of Gk−1. Using a different construction, we

achieve a bound strictly less than 2k(9k − 1). We make the use of the following definition:

Definition 3.1. The underlying bar i-visibility graph Gi of S is the graph with bar i-visibility

representation S.

We are now equipped to place an upper bound on the thickness of bar k-visibility graphs:

Theorem 3.2. If Gk is a bar k-visibility graph with k ≥ 1, then Θ(Gk) ≤ 6k.

Proof. Consider a bar k-visibility representation S of some bar k-visibility graph. We now

construct a bar k-visibility graph from S. Define a one-bend drawing of a graph as Felsner

and Massow did in [4]: a drawing in the plane in which each edge is a polyline with at most

one bend. We first create a one-bend drawing of Gk. First widen the bars so that they are

rectangles, while keeping their lengths constant. Each vertex v in the graph now corresponds

to a rectangle Rv. Next draw each vertex on the midpoint of the left side of each rectangle.

Then take the leftmost endpoint, say u, of each edge e = {u, v}. This exists by Assumption

1.4. Then project v orthogonally onto the nearest side of Ru, and call this projection v′.

Note that the line between v and v′ is a sightline between Ru and Rv. Take vε on the side

of Ru containing v′ so that the length of v′vε is small enough so that vεv does not intersect

any other drawn line segment. Let e be the union of the two line segments uvε and vεv.

Figure 6 shows the construction of such an edge. Note that if two edges are adjacent, then

by definition they will not intersect anywhere other than their common endpoint.

Now take a vertex-coloring of Gk−1 of S. In our one-bend drawing, color each edge using

the color of its left-most vertex. We make use of Lemma 2.3:
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Figure 6: Construction of a one-bend edge.

Lemma 3.3. If any two edges e and f with endpoints (u, v) and (w, x) respectively intersect,

then they have different colors.

Proof. Without loss of generality assume that u is to the left of v and w is to the left of

x. It is clear that if e and f intersect, then the intersection point is either that of uvε and

xεx, or vεv and wxε. Without loss of generality, assume that the former occurs. Then the

sightline between x and its orthogonal projection onto Rw passes through Ru. This means

that u and w must have been connected in Gk−1, and it follows that u and w were assigned

different colors. This shows that e and f were assigned different colors. 4

The only colors we used were the ones used in the vertex-coloring of Gk−1, so Θ(Gk) is

bounded by χ(Gk−1). This is shown in Corollary 9 by Dean et al. [2] to be at most 6k, so it

follows that Θ(Gk) ≤ 6k.

This bound is better since it is not quadratic, but Felsner and Massow [4] showed that

for every bar 1-visibility graph G1, Θ(G1) ≤ 4, so this upper bound is not tight.

We now establish a lower bound on the maximal thickness of bar k-visibility graphs.

Theorem 3.4. There exist bar k-visibility graphs with thickness at least k+ 1 for all k ≥ 0.

Proof. Consider m planar subgraphs of a bar k-visibility graph Gk with n vertices. It is a well

known fact that the number of edges in a planar graph is at most six less than three times

the number of vertices, so it follows that the number of edges in Gk is at most m(3n − 6).

Hartke et al. [7] showed that if Gk has least 2k+2 vertices, Gk has at most (k+1)(3n−4k−6)
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edges. Dean et al. [2] showed that this bound is sharp, so we consider a bar k-visibility graph

with (k+ 1)(3n− 4k− 6) edges. Therefore m(3n− 6) ≥ (k+ 1)(3n− 4k− 6). It then follows

that Θ(Gk) ≥ (k + 1)3n−4k−6
3n−6 . As n increases, the right hand side of the inequality grows

larger than k, so for sufficiently large n we have that Θ(Gk) ≥ k + 1.

3.2 Semi-bar k-visibility graphs

We can use the technique of bounding the thickness of bar k-visibility graphs in Theorem

2.2 to produce an upper bound of 2k + 1 on the thickness of semi-bar k-visibility graphs.

However, we achieve a tighter bound of 2k by using a different coloring scheme.

Theorem 3.5. If G is a semi-bar k-visibility graph with k ≥ 1, then Θ(G) ≤ 2k.

Proof. We use a construction analogous to that in Theorem 2.1, but have each edge start at

the right vertices. The crucial step of this proof is Lemma 2.6:

Lemma 3.6. Given a bar B in a semi-bar k-visibility representation, there are at most 2k−1

longer bars such that the edges starting from those bars cross B.

Proof. If there are k+ 1 or more longer bars on each side with edges transversing B, then

the (k + 1)th bar would traverse k + 1 bars (the first k bars and then B) to get to a smaller

bar on the other side of B and thus transversing B. Therefore, there are at most k bars on

each side. Assume that there are k longer bars on each side. Now consider the top-most and

bottom-most bars Bt and Bb respectively among those k bars. From our assumption, there

must be bars bt and bb on the upper and lower sides of B respectively such that they are

shorter than B. Assume without loss of generality that bt is shorter than bb. This implies that

Bt must cross bt to reach bb, which shows that Bt traverses k+1 bars. This is a contradiction,

which implies that we cannot have k longer bars on each side of B with edges transversing

B. This completes the proof of Lemma 2.6. 4
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We now start coloring the bars in decreasing order of length. Clearly we can color every

edge emanating from the first 2k − 1 bars with 2k − 1 colors. Now for every next bar, edges

colored with at most 2k− 1 colors will traverse this bar, so we color this bar with the (2k)th

remaining color. From our original construction, intersections will only happen within bars,

so this coloring produces 2k planar subgraphs. This completes the proof of Theorem 2.5.

We now prove a lower bound on the maximal thickness of semi-bar k-visibility graphs.

Theorem 3.7. There exist semi-bar k-visibility graphs with thickness at least
⌈
2
3
(k + 1)

⌉
for

all k ≥ 0.

The proof of Theorem 2.7 is analogous to the proof of Theorem 2.4; the only difference

is the upper bound on the number of edges. Hartke et al. [7] proved a sharp upper bound of

(k + 1)(2n− 2k − 3) on the number of edges.

3.3 Counting edges in semi-bar k-visibility graphs

Here we devise a method of counting the number of edges in a semi-bar k-visibility graph.

Let G = (V,E) be a semi-bar visibility graph with n vertices. Then G has some semi-bar

visibility representation SG = {sv}v∈V of disjoint horizontal segments with left endpoints

on the y-axis (semi-bars) such that for all a, b ∈ V , {a, b} ∈ E if and only if all semi-bars

between sa and sb are shorter than both sa and sb.

Let the function A(S) be the number of semi-bars in S which are taller than all semi-bars

above them, and U(S) be the number of semi-bars in S which are taller than all semi-bars

under them. These are analogous to the numbers above and below each column in skyscraper

puzzles. For each s ∈ S let a(s) = 1 if s is taller than all semi-bars above it and let a(s) = 0

otherwise. Let u(s) = 1 if s is taller than all semi-bars under it and let u(s) = 0 otherwise.

Then A(S) =
∑

s∈S a(s) and U(S) =
∑

s∈S u(s).
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Lemma 3.8. If SG is any semi-bar visibility representation of G and all semi-bars in SG

have different lengths, then the number of edges in G is 2n− A(SG)− U(SG).

Proof. Pick an arbitrary semi-bar visibility representation SG of G. For each v ∈ V , count

how many edges in E include v and some w for which sw is taller than sv. Then each v

contributes 2− a(sv)− u(sv) edges, so there are 2n− A(SG)− U(SG) total edges.

Call an unordered pair of semi-bars {sa, sb} a bridge if sa is the same height as sb and

all semi-bars between sa and sb are shorter than sa. A semi-bar can be contained in at most

two bridges. Let Br(S) denote the number of bridges in S.

Lemma 3.9. If SG is any semi-bar visibility representation of G, then the number of edges

in G is 2n− A(SG)− U(SG)−Br(SG).

Proof. Pick an arbitrary semi-bar visibility representation SG of G. For each v ∈ V , count

how many edges in E include v and some w for which sw is at least as tall as sv. Then each

v contributes 2−a(sv)−u(sv) edges, but the edge {a, b} is double counted whenever {sa, sb}

is a bridge. So there are 2n− A(SG)− U(SG)−Br(SG) total edges.

We now extend this notion to semi-bar k-visibility graph. Let Gk = (V,E) be a semi-

bar k-visibility graph. Then Gk has a semi-bar k-visibility representation SGk
= {sv}v∈V of

disjoint horizontal semi-bars with left endpoints on the y-axis such that for all a, b ∈ V ,

{a, b} ∈ E if and only if all but at most k semi-bars between sa and sb are shorter than both

sa and sb. Define {sa, sb} to be a j-visibility edge if all but exactly j semi-bars between sa

and sb are shorter than both sa and sb.

Let the function Aj(S) be the number of semi-bars in S which are taller than all but at most

j semi-bars above them, and Uj(S) be the number of semi-bars in S which are taller than

all but at most j semi-bars under them. For each s ∈ S let aj(s) = 1 if s is taller than all

but at most j semi-bars above it and let aj(s) = 0 otherwise. Let uj(s) = 1 if s is taller than
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all but at most j semi-bars under it and let uj(s) = 0 otherwise. Then Aj(S) =
∑

s∈S aj(s)

and Uj(S) =
∑

s∈S uj(s).

Lemma 3.10. If SGk
is any semi-bar k-visibility representation of Gk and all semi-bars in

SGk
have different lengths, then the number of edges in Gk is

2(k + 1)n−
k∑
j=0

(Aj(SGk
) + Uj(SGk

)).

Proof. Pick an arbitrary semi-bar k-visibility representation SGk
of Gk. Fix j ≤ k, and for

each v ∈ V , count how many j-visibility edges include sv and some sw for which sw is

taller than sv. Then each v contributes 2 − aj(sv) − uj(sv) j-visibility edges, so there are

2n−Aj(SGk
)−Uj(SGk

) total j-visibility edges in SGk
. Summing over all j from 0 to k there

are 2(k + 1)n−
∑k

j=0(RLj(SGk
) + LRj(SGk

)) total edges in Gk.

Call an unordered pair of semi-bars {sa, sb} a j-bridge if sa is the same height as sb and all

but exactly j semi-bars between sa and sb are shorter than sa. A semi-bar can be contained

in at most two j-bridges for each j. Let Brj(S) denote the number of j-bridges in S.

Lemma 3.11. If SGk
is any semi-bar k-visibility representation of Gk, then the number of

edges in Gk is

2(k + 1)n−
k∑
j=0

(Aj(SGk
) + Uj(SGk

) +Brj(SGk
)).

Proof. Pick an arbitrary semi-bar k-visibility representation SGk
of Gk. Fix j ≤ k, and for

each v ∈ V , count how many j-visibility edges include sv and some sw for which sw is at

least as tall as sv. Then each v contributes 2 − aj(sv) − uj(sv) j-visibility edges, but the

j-visibility edge between sa and sb is double counted whenever {sa, sb} is a j-bridge. So

there are 2n−Aj(SGk
)− Uj(SGk

)−Brj(SGk
) total j-visibility edges in SGk

. Then there are

2(k + 1)n−
∑k

j=0(Aj(SGk
) + Uj(SGk

) +Brj(SGk
)) total edges in Gk.
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Since Felsner and Massow showed a tight upper bound of (k + 1)(2n − 2k − 3) on the

number of edges in semi-bar k-visibility graphs with n ≥ 2k + 2 vertices, then the Lemma

3.11 implies the next corollary.

Corollary 3.12. If SGk
is any semi-bar k-visibility representation of G, then

k∑
j=0

(Aj(SGk
) + Uj(SGk

) +Brj(SGk
)) ≥ (k + 1)(2k + 3).

3.4 Rectangle k-visibility graphs

Some bounds on parameters of rectangle k-visibility graphs are immediate corollaries of the

results about bar k-visibility graphs. If Gk is a rectangle k-visibility graph with n ≥ 2k + 2

vertices, then there are at most (k + 1)(3n − 4k − 6) horizontal visibility segments and

(k + 1)(3n − 4k − 6) vertical visibility segments in any rectangle k-visibility representation

of G, by the upper bound on edges in bar k-visibility graphs [7]. Therefore Gk has at most

2(k + 1)(3n− 4k − 6) edges and the chromatic number of Gk is at most 12k + 12.

As with bar k-visibility graphs, this yields an upper bound on the thickness of Gk. Observe

that making all rectangle sides in the representation lie on different lines does not decrease

the maximum possible thickness of Gk.

Lemma 3.13. If Gk is a rectangle k-visibility graph, then Θ(Gk) ≤ 12k.

Proof. Let RGk
be a rectangle k-visibility representation of Gk. We first alter RGk

so that

we can use Theorem 3.2. Consider the k-visibility representation LGk
obtained from RGk

by

removing the top and rightmost sides of all rectangles and allowing visibility lines between

two L-shapes u and v to be vertical or horizontal segments passing through u, v, and at

most k other L-shapes. Then Gk is also the k-visibility graph of LGk
.

Modify LGk
by changing each L-shape s in LGk

to a region rs consisting of two nondegenerate

rectangles. The endpoints of the segments in s are the midpoints of the short sides of the
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rectangles in rs and the width of rs is small enough that the resulting L-shaped regions are

disjoint, the k-visibility graph of LGk
is the same, and no sides of any regions are on the

same line.

Draw the vertex for each region rs in LGk
on the bottom left corner of s, where short sides

of the rectangles in rs intersect at their midpoints. With 6k colors make a one-edge drawing

as in Theorem 3.2 connecting the vertices with horizontal k-visibility lines so that no crossing

edges have the same color. Do the same for pairs of vertices with vertical k-visibility lines

using 6k other colors. Then the resulting drawing uses 12k colors and no pair of crossing

edges have the same color.

4 Arc/Circle k-Visibility Graphs

Upper bounds on the number of edges and the chromatic number of bar k-visibility graphs

were found by Dean et al. [2], and several of the methods used can be applied to arc k-

visibility graphs and circle k-visibility graphs. Here we set upper bounds on these properties

for these types of graphs.

We first bound the number of edges of arc k-visibility graphs. Consider an edge {u, v}

in the visibility graph, and let U and V be their corresponding arcs. Let `({u, v}) denote

the radial line segment between U and V whose angular coordinate is the infimum of the

(possibly negative) angular coordinates of all lines of sight between U and V . If `({u, v})

contains the negative endpoint of U (respectively V ) then we call {u, v} a negative edge of

U (respectively V ). If `({u, v}) does not contain the negative endpoint of U or V , then it

must be a k-visibility edge, and it must contain the positive endpoint of some arc B that

blocks the k-visibility between U and V after that point. We call it a positive edge of B.

Remark 4.1. By definition, there are at most k + 1 positive edges and at most 2k + 2

negative edges corresponding to each arc. Therefore, there are at most (3k+ 3)n edges in an
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arc k-visibility graph with n vertices.

Theorem 4.2. In a circle k-visibility graph with n ≥ 2k + 2 vertices, there are at most

(k + 1)(3n− k − 2) edges.

Proof. We begin by proving the statement for arc k-visibility graphs. Remark 3.1 gives us

an upper bound of 3n(k+ 1) edges. However, arcs a1, a2, . . ., ak+1 have at most k+ 1, k+ 2,

. . ., 2k + 1 negative edges respectively and 0, 1, . . ., k positive edges respectively. Therefore

the bound on edges can be improved to

(3k + 3)n− 2
k+1∑
i=1

i = (k + 1)(3n− k − 2).

Now consider circle k-visibility graphs. Note that circles do not have any positive or

negative edges associated with them. This implies that having circles in the circle k-visibility

representation does not increase the upper bound on the edges. Thus there are at most

(k + 1)(3n− k − 2) edges in a circle k-visibility graph with n vertices.

Remark 4.3. Note that letting k = 0 produces an upper bound on the number of edges that

a circle visibility graph can have.

These upper bounds on the number of edges of arc and circle k-visibility graphs imme-

diately give an upper bound on the chromatic number of these two types of graphs.

Corollary 4.4. If G is a circle k-visibility graph, then χ(G) ≤ 6k + 6.

The proof is nearly identical to the proof of Corollary 9 in a paper by Dean et al. [2].

We showed in Section 3 that the thickness of bar k-visibility graphs is bounded by their

chromatic numbers. Bar k-visibility graphs are all arc k-visibility graphs, which are in turn

circle k-visibility graphs. We are then tempted to claim that the maximal thickness of all

circle k-visibility graphs is at most 6k, but a similar proof does not hold, for arcs can see

through the center of the arc k-visibility representation. We have not found a bound yet.
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5 Compact Visibility Graphs

5.1 Two open problems

Several conjectures were presented by Develin et al. [6] on the structure of compact visibility

graphs. One of note is the following:

Conjecture 5.1 (Develin et al. [6]). A planar graph G is a compact visibility graph if and

only if it has a plane drawing such that for all internal faces F of G, the subgraph GF induced

by the vertices of F is a compact visibility graph.

This conjecture is quite significant, for if true it enables us to generate infinitely many

and arbitrarily large compact visibility graphs without having to find the sets of regions

corresponding to them. However, Develin et al. [6] posed another problem which conflicts

with this conjecture. While considering compact visibility graphs with regions in higher

dimensions, they asked the following question:

Question 5.2 (Develin et al. [6]). Is it true that all graphs representable as compact visibility

graphs in R3 are also representable as compact visibility graphs in R2?

We construct a planar graph that is representable in three dimensions that has no planar

drawing with the property given in Conjecture 4.1. Consider a sphere and a very small slice

C. Now take four extremely thin ellipsoids and place them around C. Make the ellipsoids

thin enough so that opposite ellipsoids cannot see each other over C, and wide enough so that

each ellipsoid can see the other two. Iterating this once produces a wheel. Reiterating this

several times produces a graph similar to that in Figure 7. The central vertex corresponds

to the sphere, and the other vertices correspond to the ellipsoids.

It is not hard to see from the geometry of this graph that it cannot be drawn such that

none of the 4-cycles are faces, and the graphs induced on these faces are simply 4-cycles,
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Figure 7: Graph that disproves Conjecture 4.1 if Question 4.2 is true.

which are not compact visibility graphs by Theorem A.1. It then follows that Conjecture 4.1

and Question 4.2 cannot both be true.

5.2 Complete n-partite compact visibility graphs

Inspired by the compact visibility representation of K1,2,3 shown in Figure 8, we classify this

special class of n-partite graphs as compact visibility graphs.

Figure 8: Compact visibility representation of K1,2,3.

Theorem 5.3. The complete n-partite graph K1,a1,a2,...,an−1 is a compact visibility graph.

The construction in Figure 8 can easily be generalized to generate representations for

every such graph by making the surrounding region a polygon with n− 1 sides.

5.3 Classification of compact visibility graphs

The work that Develin et al. [6] have done on compact visibility graphs has provided tools to

identify graphs that are not compact visibility graphs. Though these tools most likely do not

identify all graphs that are not compact visibility graphs, they do identify most such small

21



graphs. They then enable us to classify most graphs with six or fewer vertices. Appendix A

gives a nearly comprehensive list of every compact visibility graph with six vertices or less,

excluding the graph depicted in Figure 9.

Figure 9: The only unclassified graph with six or less vertices.

After some experimentation, it seems unlikely that this graph could be a compact visi-

bility graph. If it is in fact a compact visibility graph, then it falsifies Conjecture 4.1.

6 Concluding Remarks

We have improved a quadratic upper bound on the thickness of bar k-visibility graphs to a

linear upper bound, and we have placed a similar upper bound on the thickness of semi-bar

k-visibility graphs. These bounds are not yet sharp, and we have added linear lower bounds

on the upper bounds, so we are inspired to pose the following question:

Question 6.1. Is there a linear function f(k) such that Θ(Gk) ≤ f(k) for all bar k-visibility

graphs Gk, while for all k ≥ 0 there exist such graphs such that Θ(Gk) = f(k)? Do similar

functions exist for semi-bar, rectangle, or circle k-visibility graphs?

We have also demonstrated a formula for counting the number of edges in a semi-bar

k-visibility graph by using information about the structure of its k-visibility representation.

It would be interesting to determine if similar formulas exist for bar or rectangle k-visibility

graphs.

In addition, we have placed upper bounds on the number of edges in and the chromatic

number of circle k-visibility graphs. We are then tempted to ask:
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Question 6.2. What is the largest possible number of edges in a circle k-visibility graph Gk

with n vertices? What is the largest possible value of χ(Gk)?

Figure 9 begs the final question:

Question 6.3. Is the graph in Figure 9 a compact visibility graph?
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A Appendix of Compact Visibility Graphs

The classification of compact visibility graphs is made easier by Theorem A.1.

Theorem A.1 (Develin et al. [6]). If G is a compact visibility graph, then every edge of G

is either a cut-edge or part of a triangle.

This theorem is valid for compact visibility graphs that have concave regions as well as

convex regions, and it directly shows that the 48 graphs listed in Figure 10 are not compact

visibility graphs.

Figure 10: Table of graphs eliminated by Theorem A.1.

Develin et al. [6] also gave a method of constructing an infinite family of compact visibility

graphs in the proof of Theorem A.2.

Theorem A.2 (Develin et al. [6]). If G has a plane drawing such that all of the internal

faces are triangles, then G is a compact visibility graph.

It follows that the 24 graphs given in Figure 11 are compact visibility graphs.
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Figure 11: Compact visibility graphs given by Theorem A.2.

In addition, if a graph G is a visibility graph, then if we attach a leaf to a vertex v, the

region corresponding to v can be hollowed so that the region corresponding to the new leaf

can be inserted inside it. It follows that if a vertex u has a degree of 1 and G − {u} is a

compact visibility graph, then G is also a compact visibility graph. Therefore the graphs in

Figure 12 are compact visibility graphs:

Figure 12: Table of compact visibility graphs with leaves.
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This leaves the 16 graphs in Figure 13, and the unclassified graph in Figure 9. The

compact visibility representations are given with the other 16 graphs.

Figure 13: 16 remaining compact visibility graphs.
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