On Successive Quotients of Lower Central Series Ideals for Finitely Generated Algebras

Kathleen Zhou
Under the direction of Teng Fei and Dr. Pavel Etingof (MIT)

Abstract

This paper examines the behavior of the successive quotients $N_{i}(A)$ of the lower central series ideals $M_{i}(A)$ of a finitely generated associative algebra A over \mathbb{Z}. We define the lower central series $L_{i}(A)$ by $L_{1}(A)=A, L_{i+1}(A)=\left[A, L_{i}(A)\right], M_{i}(A)=A \cdot L_{i}(A) \cdot A$, and $N_{i}(A)=M_{i}(A) / M_{i+1}(A)$. We decompose the N_{i} into its free and torsion components using the structure theorem of finitely generated abelian groups, and we examine patterns in the ranks and torsion of N_{i} for algebras with various homogeneous relations, including x^{2} in multiple variables, q-polynomial relation $y x-q x y$, and $x^{m}+y^{m}$. In order to do this, we create data tables with the ranks and torsion of various N_{i}, previously uncalculated, based on calculations done in the program Magma. This paper includes a complete description of N_{i} for the q-polynomial algebra, $\mathbb{Z}\langle x, y\rangle /(y x-q x y)$ and a proof for the ranks of N_{2} for $A\langle x, y\rangle /\left(x^{m}+y^{m}\right)$, which provides insight into how changing the coefficient or degree of a relation affects rank and torsion, as well as general patterns for which primes appear in torsion.

1 Introduction

For the past several years, algebraists have been studying the lower central series $L_{i}(A)$, which are successive subspaces of an associative algebra A formed from the commutators of A. Thus, the lower central series and its related objects can be used to measure the noncommutativity of algebras. We consider the successive quotients of the two-sided ideals M_{i} generated by L_{i}, and we call these quotients N_{i}. We study the structure and properties of N_{i} to better understand the structure of associative algebras.

Lower central series quotients of free associative algebras were first studied by Feigin and Shoikhet [4]. They looked at the successive quotients $B_{i}=L_{i} / L_{i+1}$, and concluded that there was an isomorphism between the space $A / M_{3}(A)$ and the space of even differential forms. This isomorphism is essential in proving the pattern of $N_{2}\left(A_{2} /\left(x^{m}+y^{m}\right)\right)$ found in this paper. The study of quotients continued with Etingof, Kim, and Ma [3], who completely described the quotient $A / M_{i}(A)$ for $i=4$.

The study of B_{i} was continued in the work of Balagović and Balasubramanian [1], who looked at B_{2} in the quotient of a free algebra. In particular, they provided a complete description of $B_{2}\left(A_{2} /\left(x^{d}+y^{d}\right)\right)$, which is similar to the results found in this paper for $N_{2}\left(A_{2} /\left(x^{m}+y^{m}\right)\right)$.

While the structure of B_{i} has been studied in multiple papers, the quotients N_{i} have been less studied. Kerchev [5] studied N_{i} for free algebras and computed $N_{i}\left(A_{n}\right)$ for several values of i and n. However, there is still much work to be done in studying the structure of N_{i}. In particular, torsion has never been calculated for N_{i} even for free algebras, and N_{i} have not been studied for algebras with relations.

In this paper, we study the behavior of N_{i} for an associative algebra $\mathbb{Z}\langle x, y\rangle$ with various relations. We also compute the ranks and torsion of various N_{i} using a computer program called Magma. The process of collecting data is explained in Section 3. Several patterns suggested by the data are contained in Section 4. In Section 5 we provide a complete description of N_{i} for algebras with the relation $y x-q x y=0$, also known as q-polynomial algebras. The results concerning the structure of N_{2} with the relation $x^{m}+y^{m}$ is proven in Section 6.

We begin with preliminary background to better understand the algebraic objects of study.

2 Preliminary Background

2.1 Associative Algebras and Their Lower Central Series

Definition 2.1. Let A be a vector space over a field k with a bilinear associative multiplication operation $(a, b) \mapsto a \cdot b$, which is also written as $a b$. If A also has a multiplicative identity, denoted by 1 , then A is a unital associative algebra.

A free algebra is a unital associative algebra that is generated by a set of generators with no relation. In this paper, we are interested in associative algebras that are not necessarily free, more precisely, algebras with homogeneous relations. An algebra $A /\langle P\rangle$ will denote the quotient algebra of A by the ideal generated by the relation P. We define a bracket operation on A by $[a, b]=a \cdot b-b \cdot a$. This bracket operation satisfies $[a, a]=0$ and the Jacobi identity:

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0 .
$$

A vector space with a bilinear bracket operation $[a, b]$ such that the Jacobi identity and $[a, a]=0$ are satisfied is called a Lie algebra, so any associative algebra is also a Lie algebra with $[a, b]=$ $a \cdot b-b \cdot a$.

Definition 2.2. Let A be a Lie algebra. Define a series of Lie ideals inductively such that $L_{1}(A)=A$ and $L_{i+1}(A)=\left[A, L_{i}(A)\right]$, where the bracket of two subspaces C and D is defined as $[C, D]=$ $\operatorname{span}([c, d])$ such that $c \in C, d \in D$. This series of Lie ideals is the lower central series of A. We abbreviate $L_{i}(A)$ as L_{i}.

We may make this definition over \mathbb{Z} by using \mathbb{Z}-modules (i.e. Abelian groups) instead of vector spaces. Similarly, we can use this definition over any commutative ring R.

Definition 2.3. Denote the two-sided ideals generated by each L_{i} by M_{i}, i.e. $M_{i}=A \cdot L_{i} \cdot A$.
It is easy to see that $M_{i}=A \cdot L_{i}$. Using this definition, we can define the quotients N_{i}.
Definition 2.4. Define the N_{i} to be the successive quotients M_{i} / M_{i+1}.
Now we introduce the idea of grading, which is crucial to representing data effectively.
Definition 2.5. Let A be a module over a commutative ring k. The module A is graded if A has a direct sum decomposition into submodules $\bigoplus_{i \geq 0} A_{i}$. If A is an algebra such that $A_{i} \cdot A_{j} \subset A_{i+j}$, then A is a graded algebra.

Example 1. The simplest example of a graded algebra is a polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$, where the grading is by the degree of the polynomial. We observe that N_{i} is graded, as it inherits its grading from A. Our study is simplified if we look at N_{i} by its "degree," which is denoted by d. The part of N_{i} at degree d will be denoted as $N_{i}[d]$, which is a finitely generated k-module.

2.2 Torsion and Classfication of Finitely Generated Abelian Groups

Definition 2.6. An element a of an Abelian group G is a torsion element if $n \cdot a=0$ for some positive integer n. Conventionally, 0 is also considered a torsion element. In this case, we say that a is an n-torsion element. All of the torsion elements in G form a subgroup of G.

To clarify the concept of torsion, we offer a simple example.
Example 2. Consider the group $G=\mathbb{Z}_{6}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$. This group has 2-torsion, 3-torsion, and 6torsion. 0,2 , and 4 are 3 -torsion elements, 0,3 are 2 -torsion elements, and all elements are 6 -torsion elements. All 2 and 3 -torsion elements are also 6 -torsion elements.

The idea of torsion becomes especially important due to the Structure Theorem of Finitely Generated Abelian groups, which states that groups can be separated into their free and torsion components.

Theorem 2.1 (Structure Theorem of Finitely Generated Abelian Groups). Every finitely generated Abelian group G is isomorphic to a finite direct sum of infinite cyclic groups and cyclic groups of order p^{n}, for various primes p. This decomposition is unique up to order of summands.

The theorem can be restated as

$$
G \cong F \oplus T,
$$

where F is the free component, which is isomorphic to \mathbb{Z}^{r} for some $r \in \mathbb{Z}$, and T is the torsion component, consisting of a finite sum of cyclic groups of order p^{n} for various primes p. In this case, r is called the rank of the free component, known simply as "rank."

The goal of the project is to determine the structure N_{i} for algebras over \mathbb{Z} by studying patterns in the ranks and torsion of N_{i}.

2.3 Sample Calculations for $\mathbb{Z}\langle x, y\rangle$

We provide a set of sample calculations to illustrate how L_{i}, M_{i}, and N_{i} are constructed. We consider the free associative algebra $\mathbb{Z}\langle x, y\rangle$. Because it is not known whether torsion exists in
N_{i} for free algebras generated by 2 variables, we focus on calculating the ranks of N_{i}. First, we calculate the bases of the first few L_{i} in low degrees.

By definition, $L_{1}=A$, so L_{1} spanned by all the monomials in x, y. The next row L_{2} is formed from the set of all $\left[A, L_{1}\right]$. As the minimum degree of a non-trivial part of L_{1} is 1 , the minimum degree of a non-trivial part of L_{2} is 2 . The only term in the basis of $L_{2}[2]$ is $[x, y]$, as $[y, x]=-[x, y] . L_{2}[3]$ is spanned by $\left[L_{1}[1], L_{1}[2]\right]$. Thus, the potential basis vectors are $[x, x y]$, $[y, x y],[x, y x],\left[x, y^{2}\right],\left[y, x^{2}\right],[y, y x],\left[x, x^{2}\right]$, and $\left[y, y^{2}\right]$. However, both $\left[x, x^{2}\right]$ and $\left[y, y^{2}\right]$ are 0 . In addition, $[x, x y]+[x, y x]=\left[y, x^{2}\right]$. Thus, $\left[y, x^{2}\right]$ is not linearly independent and can be removed from the basis. Similarly, $[y, x y]+[y, y x]=\left[x, y^{2}\right]$, and $\left[x, y^{2}\right]$ can be eliminated. Only 4 terms remain in the basis of $L_{2}[3]$. Calculating $L_{3}[3]$ is more straightforward, as $L_{3}[3]=\left[L_{1}[1], L_{2}[2]\right]$. The results of the basis of L_{i} can be found in Table 1, where the top row indicates the degree d.

$L_{i}[d]$	1	2	3
L_{1}	x, y	$x^{2}, x y, y x, y^{2}$	$x^{3}, x^{2} y, x y x, y x^{2}, y^{3}, y^{2} x, y x y, x y^{2}$
L_{2}	0	$[x, y]$	$[x, x y],[y, x y],[x, y x],[y, y x]$
L_{3}	0	0	$[x,[x, y]],[y,[x, y]]$

Table 1: Bases for L_{i}
The M_{i} can be constructed from L_{i}, as $M_{i}=A \cdot L_{i} \cdot A=A \cdot L_{i}$. By this definition, $L_{i}[i]=M_{i}[i]$, as $L_{i}[i]$ must be multiplied by scalars on both sides for the minimum non-trivial degree i. Thus, $M_{1}=A$, and $M_{2}[2]$ is also easy to compute. Calculating $M_{2}[3]$ is slightly more complicated. $M_{2}[3]=L_{1}[0] \cdot L_{2}[3]+L_{1}[1] \cdot L_{2}[2]$. Therefore, the possible terms in the basis of $M_{2}[3]$ are $[x, x y]$, $[y, x y],[x, y x],[y, y x], x[x, y]$, and $y[x, y]$. Eliminating linearly dependent terms, the basis of $M_{2}[3]$ contains $[x, x y],[y, x y],[x, y x]$, and $[y, y x]$. Then, $M_{3}[3]=L_{3}[3]$, so Table 2 is complete.

$M_{i}[d]$	1	2	3
M_{1}	x, y	$x^{2}, x y, y x, y^{2}$	$x^{3}, x^{2} y, x y x, y x^{2}, y^{3}, y^{2} x, y x y, x y^{2}$
M_{2}	0	$[x, y]$	$[x, x y],[y, x y],[x, y x],[y, y x]$
M_{3}	0	0	$[x,[x, y]],[y,[x, y]]$

Table 2: Bases for M_{i}
Now we calculate the ranks of $N_{i}[d]$, which are the cardinalities of the basis of each $N_{i}[d]$. As $N_{i}=M_{i} / M_{i+1}, \operatorname{rank}\left(N_{i}[d]\right)=\operatorname{rank}\left(M_{i}[d]\right)-\operatorname{rank}\left(M_{i+1}[d]\right)$. Thus, computing the ranks of each $N_{i}[d]$ becomes a simple subtraction problem. The ranks are shown in Table 3.

$N_{i}[d]$	1	2	3
N_{1}	2	3	4
N_{2}	0	1	2

Table 3: Free Ranks for N_{i}

3 Data Collection

We first compile data tables of the ranks and torsion of N_{i} for various relations. By changing the number of variables, coefficients, or degree of the relations, we can find patterns and form conjectures about the behavior of the ranks and torsion of N_{i}.

Data is collected by running computations in Magma [2]. This code was run for many relations over the integers, and the outputs were then organized into table form by grading. The left column displays the N_{i}, while the top row is organized by grading (degree). Each term in the data table includes the rank, which is displayed outside of the parentheses, and the torsion, which is displayed within the parentheses.

Here, we provide an example of how the data was processed and organized into tables. The example below shows how to format the output in Magma to a data table.

Example 3. The output code
\$N_ 4 \$ \& 8 16(Abelian Group isomorphic to $\mathrm{Z} / 2+\mathrm{Z} / 2+\mathrm{Z} / 4+\mathrm{Z} / 4$)
is expressed as $16\left(2^{2} \cdot 4^{2}\right)$ for $N_{4}[8]$ in a table.

The expression has a rank of 16 , which is the last numbered output before the parentheses. The torsion is slightly more difficult to express. The output data in the parentheses represents the direct sum of many cyclic groups. While prime power cyclic groups do not need to be further decomposed, other groups can be decomposed into coprime components. For example, \mathbb{Z}_{60} can be decomposed into $\mathbb{Z}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5}$ by the result in group theory that states $\mathbb{Z}_{m n}=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ for m, n coprime. The data is decomposed into prime powers for the tables.

These components can then be combined through exponent rules (eg. $\mathrm{Z} / 2+\mathrm{Z} / 2$ given in the output is expressed in the table as 2^{2}). Thus, the final form of the term in the data table for $N_{4}[8]$ is $16\left(2^{2} \cdot 4^{2}\right)$.

We look for patterns within these data tables, then try to prove them.

4 Observations of Patterns in Data

After compiling tables of algebras with various relations, we find several patterns in the ranks and torsion of the N_{i}.

4.1 Patterns in $\mathbb{Z}\left\langle x_{1}, \ldots, x_{n}\right\rangle /\left(x_{1}^{2}\right)$

Interesting patterns arise for the algebra with the relation $x_{1}^{2}=0$ with a number of variables, shown in Table 4. With two variables, it seems that the torsion and ranks of N_{i} stabilize rather quicklythat is to say, the torsion and ranks do not chnage as d increases. Reading across the rows shows the stabilization of the ranks from $N_{i}[i+2]$ and a stabilizing torsion.

$N_{i}[d]$	2	3	4	5	6	7	8	9
N_{2}	1	$1(2)$	$1(2)$	$1(2)$	$1(2)$	$1(2)$	$1(2)$	$1(2)$
N_{3}	0	2	$3(2)$	$3\left(2^{2}\right)$	$3\left(2^{2}\right)$	$3\left(2^{2}\right)$	$3\left(2^{2}\right)$	$3\left(2^{2}\right)$
N_{4}	0	0	2	$3\left(2^{2}\right)$	$3\left(2^{4}\right)$	$3\left(2^{5}\right)$	$3\left(2^{5}\right)$	$3\left(2^{5}\right)$
N_{5}	0	0	0	4	$7\left(2^{3}\right)$	$7\left(2^{7} \cdot 3\right)$	$7\left(2^{9} \cdot 3\right)$	$7\left(2^{10} \cdot 3\right)$
N_{6}	0	0	0	0	5	$9\left(2^{5}\right)$	$9\left(2^{12} \cdot 3 \cdot 5\right)$	$9\left(2^{16} \cdot 3 \cdot 5\right)$
N_{7}	0	0	0	0	0	9	$18\left(2^{7}\right)$	$19\left(2^{19} \cdot 3^{2} \cdot 5\right)$
N_{8}	0	0	0	0	0	0	12	$25\left(2^{12}\right)$
N_{9}	0	0	0	0	0	0	0	20

Table 4: $x_{1}^{2}=0$, two variables
This yields a conjecture about the stabilization of the ranks and torsion of N_{i}.

Conjecture 4.1.1. For $\mathbb{Z}\langle x, y\rangle /\left(x^{2}\right), N_{i}[j] \cong N_{i}[j+1]$ for $j \geq 2 i-1$.

It would be interesting to know how soon the ranks stabilize for algebras with more generators, and which primes will ultimately appear in torsion.

4.2 Patterns in $\mathbb{Z}\langle x, y\rangle /(y x-q x y)$

We notice that the ranks are non-zero only for the diagonal $N_{i}[i]$, and these ranks are equal to $i-1$, as seen in Tables 9 through 11, found in Appendix A.1. Additionally, fixing a d, the torsion in all $N_{i}[d]$ for $i<d$ are the same: $\left(\mathbb{Z}_{q-1}\right)^{d-1}$. Along the diagonal $i=d$, there is a more interesting pattern with more primes. We are able to completely describe N_{i} in this case, and we show that on the diagonal $i=d$, all primes will eventually appear, except those that divide q. A more detailed description and proof of the result on the torsion in $\mathbb{Z}\langle x, y\rangle /(y x-q x y)$ are provided in Section 5.

4.3 Patterns in $\mathbb{Z}\langle x, y\rangle /\left(x^{m}+y^{m}\right)$

By examining the algebras $\mathbb{Z}\langle x, y\rangle /\left(x^{m}+y^{m}\right)$, we discover several patterns occurring across tables in N_{i} for $i=2,3,4$. The complete set of data can be found in Tables 12 to 14 in Appendix A.2. For N_{2}, the ranks follow a palindromic pattern similar to the one found in $B_{2}[1]$, which is shown in Table 5 , where the left column indicates values of m.

$N_{2}[d]$	2	3	4	5	6	7	8
2	1						
3	1	2	1				
4	1	2	3	2	1		
5	1	2	3	4	3	2	1

Table 5: Ranks for $N_{2}[d]$ with the relation $x^{m}+y^{m}=0$
Proposition 4.1. In the algebra $\mathbb{Z}\langle x, y\rangle /\left(x^{m}+y^{m}\right), \operatorname{rank}\left(N_{2}[k]\right)=k-1$ for $k<m, \operatorname{rank}\left(N_{2}[k]\right)=$ $2 m-k-1$ for $m \leq k \leq 2 m-2$, and 0 for all other values of k.

This proposition will be proven in Section 6.
The patterns developing in the ranks of N_{3} and N_{4} are almost palindromic, and we see pseudoarithmetic sequences. The values for the ranks of N_{3} are displayed in Table 6, with the left column showing values of m.

$N_{3}[d]$	3	4	5	6	7	8	9	10
2	2	1	0	0	0	0	0	0
3	2	5	4	1	0	0	0	0
4	2	5	8	7	4	1	0	0
5	2	5	8	11	10	7	4	1

Table 6: Ranks for $N_{3}[d]$ with the relation $x^{m}+y^{m}=0$
Conjecture 4.3.1. In the algebra $\mathbb{Z}\langle x, y\rangle /\left(x^{m}+y^{m}\right), \operatorname{rank}\left(N_{3}[k]\right)=3 k-7$ for $k \leq m+1$, $\operatorname{rank}\left(N_{3}[k]\right)=6 m-3 d+1$ for $m+1<k<2 m+1$, and 0 for all other values of k.

While N_{2} and N_{3} seem to have easily generalizable patterns, N_{4} is slightly more complicated. The bolded numbers in Table 7 are the ones that remain consistent as d increases.

$N_{4}[d]$	4	5	6	7	8	9	10
2	2						
3	$\mathbf{3}$	7	$\mathbf{4}$				
4	$\mathbf{3}$	$\mathbf{8}$	13	$\mathbf{1 0}$	$\mathbf{4}$		
5	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{1 4}$	19	$\mathbf{1 6}$	$\mathbf{1 0}$	$\mathbf{4}$

Table 7: Ranks for $N_{4}[d]$ with the relation $x^{m}+y^{m}=0$

Conjecture 4.3.2. The ranks of N_{4} will become stable outside of the diagonal $d=m+2$, where d is the degree of the grading. We expect $\operatorname{rank}\left(N_{4}\left(A_{2} /\left(x^{m}+y^{m}\right)\right)[2 m-k]\right)$ to stabilize for large m and fixed $k \geq 0$. This rank vanishes for $k<0$.

5 Complete Description of $N_{i}(\mathbb{Z}\langle x, y\rangle /(y x-q x y))$

We consider the specific algebra $\mathbb{Z}\langle x, y\rangle$ with the relation $y x-q x y$, also known as a q-polynomial algebra. A clear pattern emerges in the ranks and torsion of the N_{i}, as shown in Tables 9 through 10, which are located in Appendix A.1. The torsion in $N_{i}[d]$ for $i<d-1$ is $\left(\mathbb{Z}_{q-1}\right)^{d-1}$. The torsion along the diagonal $i=d$ has a more interesting pattern. To understand this pattern, we use a finer grading on the degrees, defining x to have degree $\langle 1,0\rangle$ and y to have degree $\langle 0,1\rangle$ where for degree $\langle u, v\rangle, d=u+v$.

Theorem 5.1. Let $A=\mathbb{Z}\langle x, y\rangle /(y x-q x y)$, where $q \in \mathbb{Z}, q \neq \pm 1$. The $\operatorname{rank}\left(N_{i}[j]\right)=i-1$ for $i=j$. Otherwise, the rank is 0 . The torsion in $N_{i}[d]$, also written as $\operatorname{Tor}\left(N_{i}[d]\right)$, for $i<d-1$ is $\left(\mathbb{Z}_{q-1}\right)^{d-1}$. Along the diagonal $i=d-1, \operatorname{Tor}\left(N_{i}[d]\right)=\bigoplus_{u+v=d} \mathbb{Z}_{q^{(u, v)}-1}$.
Note. In Theorem 5.1 and its proof, the greatest common divisor of u and v is denoted as (u, v).
Now we give some preliminary information for the proof. First, we consider the bases of the spaces L_{k} and M_{k}. We first note that because $y x=q x y$ under the relation, we can express the result of any bracket operation as a sum of $x^{u} y^{v}$ with some coefficients. We first construct a table (see Table 8 for L_{k} on the diagonal $k=u+v$, keeping in mind that $y x=q x y$). For $k>1$, the basis element of $L_{k}[\langle u, v\rangle]$ will be denoted by $S_{u, v}^{k} x^{u} y^{v}$.

Definition 5.1. $S_{u, v}^{k}$ is the largest possible integer such that $L_{k}[\langle u, v\rangle] \subset \operatorname{span}\left(S_{u, v}^{k} x^{u} y^{v}\right)$.
In the table for $k>1$, we include only the coefficients of the bases, $S_{u, v}^{k}$, and the terms in which $u<v$, as $\langle u, v\rangle$ and $\langle v, u\rangle$ are symmetric. There is no torsion if $u, v=0$. The rank of $N_{i}[j]=0$ if $j \neq i$ and $N_{i}[j]=i-1$ if $j=i$.

	$\langle 0,1\rangle$	$\langle 0,2\rangle$	$\langle 1,1\rangle$	$\langle 0,3\rangle$	$\langle 1,2\rangle$	$\langle 0,4\rangle$	$\langle 1,3\rangle$	$\langle 2,2\rangle$
L_{1}	x	y^{2}	$x y$	y^{3}	$x y^{2}$	y^{4}	$x y^{3}$	$x^{2} y^{2}$
L_{2}	0	0	$(q-1)$	0	$(q-1)$	0	$(q-1)$	$\left(q^{2}-1\right)$
L_{3}	0	0	0	0	$(q-1)^{2}$	0	$(q-1)^{2}$	$(q-1) \cdot\left(q^{2}-1\right)$
L_{4}	0	0	0	0	0	0	$(q-1)^{3}$	$(q-1)^{2} \cdot\left(q^{2}-1\right)$

Table 8: Construction of L_{k} for the relation $y x-q x y=0$
We consider the bases along the diagonal $k=u+v$ and find that there is a pattern (Lemma 5.1).

Lemma 5.1. For the algebra $\mathbb{Z}\langle x, y\rangle /(y x-q x y)$, with $q \in \mathbb{Z}$ and $q \neq \pm 1$, and $S_{u, v}^{k}$ for $k=u+v$, is

$$
\begin{equation*}
S_{u, v}^{k}=(q-1)^{u+v-2} \cdot\left(q^{(u, v)}-1\right) \tag{5.1}
\end{equation*}
$$

To prove this lemma, we include a few known facts in number theory:
Fact 1. $\left(\lambda^{m}-1, \lambda^{n}-1\right)=\lambda^{(m, n)}-1$
Fact $2 .(a, b)=1 \Longrightarrow(a, b c)=(a, c)$
Fact 3. $\left(\frac{i}{h}, \frac{j}{h}\right)=1 \Longleftrightarrow(i, j)=h$
Proof. We prove Lemma 5.1 by induction on u, v. The base case is satisfied, as

$$
S_{1,1}^{2}=(q-1)^{1+1-2}\left(q^{(1,1)}-1\right)=q-1 .
$$

Because $L_{k}[\langle u, v\rangle]=\left[x, L_{k}[\langle u-1, v\rangle]\right]+\left[y, L_{k-1}[\langle u, v-1\rangle]\right], S_{u, v}^{k}$ satisfies the recursive equation

$$
\begin{equation*}
S_{u, v}^{k}=\left(S_{u-1, v}^{k-1}\left(q^{v}-1\right), S_{u, v-1}^{k-1}\left(q^{u}-1\right)\right) . \tag{5.2}
\end{equation*}
$$

Assuming that

$$
\begin{aligned}
& S_{u-1, v}^{k-1}=(q-1)^{u+v-3}\left(q^{(u-1, v)}-1\right), \\
& S_{u, v-1}^{k-1}=(q-1)^{u+v-3}\left(q^{(u, v-1)}-1\right),
\end{aligned}
$$

we want to show that

$$
\begin{align*}
S_{u, v}^{k}=\left((q-1)^{u+v-3}\left(q^{(u-1), v}-1\right)\left(q^{v}-1\right),(q-1)^{u+v-3}\left(q^{(u, v-1)}\right.\right. & \left.-1)\left(q^{u}-1\right)\right) \\
& =(q-1)^{u+v-2}\left(q^{(u, v)}-1\right) . \tag{5.3}
\end{align*}
$$

We can pull out the expression $(q-1)^{u+v-3}$, as it is common to both of the components of the greatest common divisor. Thus, equation (5.3) is reduced to

$$
\begin{equation*}
S_{u, v}^{k}=(q-1)^{u+v-3}\left(\left(q^{(u-1, v)}-1\right)\left(q^{v}-1\right),\left(q^{(u, v-1)}-1\right)\left(q^{u}-1\right)\right) . \tag{5.4}
\end{equation*}
$$

We set the following:

$$
\begin{gathered}
q^{(u-1, v)}-1=\alpha, \\
q^{v}-1=\beta \\
q^{(u, v-1)}-1=\gamma, \\
q^{u}-1=\delta .
\end{gathered}
$$

Using Facts 3 and 1, we have

$$
\begin{equation*}
(\alpha, \gamma \delta)=q-1 \Longleftrightarrow\left(\frac{\alpha}{q-1}, \frac{\gamma \delta}{q-1}\right)=1 \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\alpha}{q-1}, \frac{\gamma \delta}{q-1}\right)=1 \Longrightarrow\left(\frac{\gamma \delta}{q-1}, \beta\right)=\left(\frac{\gamma \delta}{q-1}, \frac{\alpha \beta}{q-1}\right) \tag{5.6}
\end{equation*}
$$

We also note that

$$
\left(\beta, \frac{\gamma}{q-1}\right)=1 \Longrightarrow\left(\beta, \frac{\gamma \delta}{q-1}\right)=(\beta, \delta)
$$

By Fact $1,(\alpha, \gamma)=q-1$, as $((u-1, v),(u, v-1))=1$. Thus, $\left(\frac{\alpha}{q-1}, \frac{\gamma}{q-1}\right)=1$. By equation (5.5), $\left(\frac{\gamma \delta}{q-1}, \beta\right)=\left(\frac{\gamma \delta}{q-1}, \frac{\alpha}{q-1} \beta\right)$ is true.

Because $(\beta, \gamma)=q-1$ by Fact $1,\left(\beta, \frac{\gamma}{q-1}\right)=1$. By Fact $1,(\beta, \delta)=\left(q^{(u, v)}-1\right)$. Thus, by equation (5.7), $(\beta, \delta)=\left(\beta, \frac{\gamma}{q-1} \delta\right)=\left(q^{(u, v)}-1\right)$. By equation (5.6), $\left(\frac{\gamma \delta}{q-1}, \frac{\alpha \beta}{q-1}\right)=\left(\beta, \frac{\gamma \delta}{q-1}\right)=$ $q^{(u, v)}-1$.

It follows by Fact 3 that $(\alpha \beta, \gamma \delta)=(q-1)\left(q^{(u, v)}-1\right)$.

We can now prove Theorem 5.1.
Proof. We denote the basis of $M_{k}[\langle u, v\rangle]$ as $T_{u, v}^{k} x^{u} y^{v}$, and note that for $k=u+v, S_{u, v}^{k}=T_{u, v}^{k}$, as the terms for L_{k} on the diagonal are of the lowest possible degree. Thus, L_{k} must be multiplied by constants on either side to form $M_{k}=A \cdot L_{k} \cdot A$.

Now we consider $T_{u, v}^{k}$ for $u+v>k$. We note that

$$
M_{u+v-1}[\langle u, v\rangle]=L_{u+v-1}[\langle u, v\rangle]+x \cdot L_{u+v-1}[\langle u-1, v\rangle]+y \cdot L_{u+v-1}[\langle u, v-1\rangle] .
$$

Set $T_{1} x^{u} y^{v}$ to be the basis of $x \cdot L_{u+v-1}[\langle u-1, v\rangle]$ and $T_{2} x^{u} y^{v}$ to be the basis of of $y \cdot L_{u+v-1}[\langle u, v-$ 1)], where $T_{1}=S_{u-1, v}^{u+v-1}$ and $T_{2}=S_{u, v-1}^{u+v-1}$. It is true that $T_{1} x^{u} y^{v}, T_{2} x^{u} y^{v} \operatorname{span} M_{u+v-1}[\langle u, v\rangle]$. Thus, $\left(T_{1}, T_{2}\right) x^{u} y^{v}$ spans $M_{u+v-1}[\langle u, v\rangle]$. It is known that $\left(T_{1}, T_{2}\right)=(q-1)^{u+v-2}$. Then, $(q-$ $1)^{u+v-2} x^{u} y^{v}$ spans $M_{u+v-1}[\langle u, v\rangle]$ by Lemma 5.1 and $T_{u, v}^{u+v-1}=(q-1)^{u+v-2}$. This suggests that $T_{u, v}^{k}=(q-1)^{k-1}$ if $u+v>k$.

Using this information, we can calculate the torsion N_{i}. Using the bases of M_{k}, we divide to get

Tor $\left(N_{u+v-1}[\langle u, v\rangle]\right)=\frac{\mathbb{Z} \cdot T_{u, v}^{u+v} x^{u} y^{v}}{\mathbb{Z} \cdot T_{u, v}^{u, v-1} x^{u} y^{v}}=\mathbb{Z}_{q^{(u, v)}-1}$. Summing over all u, v yields

$$
\operatorname{Tor}\left(N_{k-1}[k]\right)=\bigoplus_{u+v=k} \mathbb{Z}_{q(u, v)-1}
$$

The ranks are easy to verify given the bases. The space $M_{k}[k]$ is a free Abelian group with basis $S_{1, k-1}^{k} x y^{k-1}, \ldots, S_{k-1,1}^{k} x^{k-1} y$ with $q \neq \pm 1$, while $M_{k+1}[k]=0$. So $N_{k}[k]$ is free of rank $k-1$. Below and above the diagonal $i=d$, the ranks of $M_{k}[k]$ and $M_{k}[k+1]$ are the same, so the rank of $N_{k}[k]$ is 0 .

Corollary 5.1. All primes except those that divide q appear in the torsion of $N_{i}[i+1]$ for some i.
Proof. Given that the N_{i} has $\left(q^{(u, v)}-1\right)$-torsion, by Fermat's little theorem, all primes except those that divide q will appear in the torsion of N_{i}.

With Theorem 5.1 and Corollary 5.1, we now have a clearer idea of how the coefficients of a relation affect the ranks and torsion of N_{i}.

6 Ranks of $N_{2}\left(\mathbb{Z}\langle x, y\rangle /\left(x^{m}+y^{m}\right)\right)$

We wish to find the basis of $N_{2}\left(A_{2} /\left(x^{m}+y^{m}\right)\right)$ in order to prove Proposition 4.1, where $A_{2}=\mathbb{Q}\langle x, y\rangle$.
To do so, we use the short exact sequence $0 \rightarrow N_{2} \rightarrow A / M_{3} \rightarrow A / M_{2} \rightarrow 0$, where $A=A_{2} /\left(x^{m}+y^{m}\right)$.
First, we find the generators of A / M_{3}. We then prove the linear independence of these generators by using the isomorphism $A_{2} / M_{3} \cong \Omega^{\text {even }}\left(\mathbb{Q}^{2}\right)_{*}$ found in Feigin and Shoikhet's paper [4], thus proving the result for the ranks of $N_{2}\left(\mathbb{Z}\langle x, y\rangle /\left(x^{m}+y^{m}\right)\right)$.

6.1 Generators of A / M_{3}

We consider $A=\mathbb{Q}\langle x, y\rangle /\left(x^{m}+y^{m}\right)$ with $u=[x, y]$. We want to show that $x^{i} y^{j}$ for $0 \leq i \leq$ $m-1,0 \leq j$ and $x^{i} y^{j} u$ for $0 \leq i, j \leq m-1$ span A / M_{3}. To do this, we show that the following relations are satisfied in $A / M_{3}: u^{2}=0,[u, x]=[u, y]=0, x^{m}+y^{m}=0$, and $x^{m-1} u=y^{m-1} u=0$. Because $x^{m}+y^{m}=0$ in A, the relation also holds in A / M_{3}.

Lemma 6.1. In $A / M_{3}, u^{2}=0$.

Proof.

$$
u^{2}=[x, y] \cdot[x, y]=[x, y] \cdot(x y-y x) .
$$

Because $[x, y] \cdot x y=[[x, y], x] y+x[x, y] y$,

$$
u^{2}=[[x, y], x] y+x[x, y] y-[x, y] y x .
$$

Because $x[x, y] y-[x, y] y x=-[[x, y] y, x]$,

$$
u^{2}=[[x, y], x] y-[[x, y] y, x] .
$$

Because $[[x, y], x] y \in M_{3}$ and $-[[x, y] y, x] \in M_{3}$, the relation $u^{2}=0$ is satisfied in A / M_{3}.

Lemma 6.2. In A / M_{3}, the relations $[u, x]=[u, y]=0$ hold .

Proof. $[u, x]=[[x, y], x]$. Because $[[x, y], x] \in M_{3},[u, x]=0$ in A / M_{3}. Similarly, $[u, y]=0$.
Lemma 6.3. In $A / M_{3}, x^{m-1} u=y^{m-1} u=0$.

Proof. We know that $0=\left[x^{m}+y^{m}, x\right]$ because $x^{m}+y^{m}=0$. Additionally, $\left[x^{m}+y^{m}, x\right]=\left[x, y^{m}\right]$. We will show that $\left[x, y^{m}\right]=m y^{m-1} u$ in A_{2} / M_{3} through induction. Because u and y commute with each other by $[u, y]=0$, the base case is satisfied:

$$
0=\left[x, y^{2}\right]=x y^{2}-y^{2} x=x y^{2}-y x y+y x y-y^{2} x=u y+y u=2 y u,
$$

since $[y, u]=0$ in A_{2} / M_{3}. Now we assume that for some integer $k,\left[x, y^{k}\right]=k y^{k-1} u$. We can expand $\left[x, y^{k}\right]$ as follows:

$$
0=\left[x, y^{k}\right]=x y^{k}-y^{k} x=x y^{k}+\sum_{i=1}^{k-1}\left(-y^{i} x y^{k-i}+y^{i} x y^{k-i}\right)-y^{k} x .
$$

Now we consider $\left[x, y^{k+1}\right]=x y^{k+1}-y^{k+1}$. We expand and factor:

$$
0=\left[x, y^{k+1}\right]=\left(x y^{k}+\sum_{i=1}^{k-1}\left(-y^{i} x y^{k-i}+y^{i} x y^{k-i}\right)-y^{k} x\right) y+y^{k} x y-y^{k+1} x .
$$

Thus,

$$
\left[x, y^{k+1}\right]=\left[x, y^{k}\right] y+y^{k} u=k y^{k} u+y^{k} u=(k+1) y^{k} u=0
$$

since $[y, u]=0$ in A_{2} / M_{3}. We have proved through induction that $\left[x, y^{m}\right]=m y^{m-1} u=0$. Because m is some positive integer, $y^{m-1} u=0$ is satisfied in A / M_{3}, since we are working over \mathbb{Q}. Similarly, $x^{m-1} u=0$ is also satisfied.

From Lemma 6.1, 6.2, and 6.3, we know that $x^{i} y^{j}$ for $0 \leq i<m$ and $x^{i} y^{j} u$ for $i, j<m-1$ span A / M_{3}. Since u commutes with x and y, we can assume without loss of generality that u appears at the end of all expressions in A / M_{3}. Thus, the degree of u can either be 0 or 1 , as for $a \geq 2, u^{a}=0$.

Calculating the number of generators for each degree, we find that the dimension (from the data) for that degree equals the number of generators, predicted by Proposition 4.1.

We now show the linear independence of these generators.

6.2 The Basis of A / M_{3}

We consider the short exact sequence

$$
0 \rightarrow M_{2} / M_{3} \rightarrow A / M_{3} \rightarrow A / M_{2} \rightarrow 0,
$$

and let f be the surjection $A / M_{3} \rightarrow A / M_{2} . \quad A / M_{2}$ is the abelianization of A, so $A / M_{2}=$ $\mathbb{Q}[x, y] /\left(x^{m}+y^{m}\right)$. Now we wish to prove that the generators $x^{i} y^{j}$ and $x^{i} y^{j} u$ are linearly independent.

Lemma 6.4. The images of $x^{i} y^{j}$ in A / M_{2} are linearly independent for $0 \leq i<m$.
Proof. If $\sum\left(C_{i j} x^{i} y^{j}\right)=0$ for $C_{i j}$ constants that are not all zero, $x^{m}+y^{m}$ divides $\sum\left(C_{i j} x^{i} y^{j}\right)$. However, this is impossible, as $i<m$. Thus, if $\sum\left(C_{i j} x^{i} y^{j}\right)=0$, all $C_{i j}$ must be zero, proving that $x^{i} y^{j}$ are linearly independent in A / M_{2}.

Lemma 6.5. The spaces spanned by $x^{i} y^{j}$ for $0 \leq i<m$ and $x^{i} y^{j} u$ for $i, j<m-1$ have 0 intersection.

Proof. Let v be a common vector in the spaces spanned by the two sets of generators. Because v is a linear combination of some $x^{i} y^{j} u \in \operatorname{ker} f, f(v)=0$. We know that v is also in the space spanned by $x^{i} y^{j}$, so it must be a linear combination of $x^{i} y^{j}$. However, we have proved by Lemma 6.4 that $x^{i} y^{j}$ is linearly independent in A / M_{2}, so in order for $f(v)=0$, we must have $v=0$.

Lemma 6.6. The generators $x^{i} y^{j} u$ for $i, j<m-1$ are linearly independent in A / M_{3}.
To prove this lemma, we work with $\Omega\left(\mathbb{Q}^{2}\right)$, the space of all differential forms over \mathbb{Q}^{2}. A differential form α is of the form $f_{0}+f_{1} d x+f_{2} d y+f_{3}(d x \wedge d y)$, where f_{i} are polynomials of x and y. We assign $d x$ and $d y$ to be of degree one, so even differential forms are of the form $f_{0}+f_{3} d x \wedge d y$. We write the space of differential forms of degree k as Ω^{k}, so the space of even differential forms is denoted by $\Omega^{\text {even }}\left(\mathbb{Q}^{2}\right)$. We define a distributive wedge product, \wedge, on $\Omega\left(\mathbb{Q}^{2}\right)$ such that $d x \wedge d x=d y \wedge d y=0$ and $d x \wedge d y=-d y \wedge d x$. Functions commute with $d x, d y$, and $d x \wedge d y$. If f is a polynomial, we write $f \wedge \alpha$ as $f \alpha$ for any form α. The wedge product makes
$\Omega\left(\mathbb{Q}^{2}\right)$ a noncommutative ring. Now we define a linear map $d: \Omega^{i} \rightarrow \Omega^{i+1}$. If $f \in \mathbb{Q}[x, y]$, then $d f=(\partial f / \partial x) d x+(\partial f / \partial y) d y$, and $d f$ is of degree 1 . We have the following properties:

$$
\begin{gathered}
d(f d x)=d f \wedge d x=-(\partial f / \partial y) d x \wedge d y \\
d(d \alpha)=0 \\
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{\operatorname{deg}(\alpha)}(\alpha \wedge d \beta)
\end{gathered}
$$

We also define an associative asterisk operation, $*$, such that $\alpha * \beta=\alpha \wedge \beta+(-1)^{\operatorname{deg}(\alpha)}(d \alpha \wedge d \beta)$. The even differential forms with this $*$ operation form a subring, denoted by $\Omega^{\text {even }}\left(\mathbb{Q}^{2}\right)_{*}$. Now we can prove Lemma 6.6.

Proof. We want to prove the linear independence of $x^{i} y^{j} u$ for $i, j<m-1$ in A / M_{3}, where $A=$ $A_{2} /\left(x^{m}+y^{m}\right)$. We know that $A / M_{3}=A_{2} / M_{3}\left(A_{2}\right) /\langle P\rangle$. If $x^{i} y^{j} u$ is independent in A / M_{3}, then $\operatorname{span}\left(x^{i} y^{j} u\right) \cap\langle P\rangle=0$, where $\langle P\rangle$ is the ideal generated by $x^{m}+y^{m}$ in $A_{2} / M_{3}\left(A_{2}\right)$.

We consider the isomorphism $\phi: A / M_{3} \rightarrow \Omega^{\text {even }}\left(\mathbb{Q}^{2}\right)_{*}[4]$, where $\phi(x)=x$ and $\phi(y)=y$. Because $\Omega^{\text {even }}\left(\mathbb{Q}^{2}\right)_{*}$ is not a quotient, it is easier to study than A / M_{3}. We consider $\phi\left(x^{i} y^{j} u\right)$ and the ideal generated by $\phi\left(x^{m}+y^{m}\right)$, which is spanned by $\alpha *\left(x^{m}+y^{m}\right) * \beta$, where α and β are even differential forms. It is easy to calculate that $\phi\left(x^{i} y^{j} u\right)=2 x^{i} y^{j} d x \wedge d y$, so the images of $x^{i} y^{j} u$ in $\Omega^{\text {even }}\left(\mathbb{Q}^{2}\right)_{*}$ are forms of degree 2 , with coefficient $2 x^{i} y^{j}, i, j<m-1$. Thus, we only need to show that $\alpha *\left(x^{m}+y^{m}\right) * \beta=f+g d x \wedge d y$, where f and g are polynomials, and each term in g has either a power of x^{m-1} or y^{m-1}, ensuring no overlap with $\phi\left(x^{i} y^{j} u\right)$, where $i, j<m-1$, which will prove linear independence. Let $\alpha=f_{0}+f_{1} d x \wedge d y, \beta=g_{0}+g_{1} d x \wedge d y$, and $\gamma=\left(x^{m}+y^{m}\right)$. Thus, $d \alpha=d f_{o}, d \beta=d g_{0}$, and $d \gamma=m\left(x^{m-1} d x+y^{m-1} d y\right)$. Then,

$$
\alpha * \gamma=\alpha \wedge \gamma+d \alpha \wedge d \gamma=\gamma f_{0}+d f_{0} \wedge d \gamma+\gamma f_{1} d x \wedge d y
$$

From this, we know that $d(\alpha * \gamma)=d\left(f_{0} \gamma\right)=\gamma d f_{0}+f_{0} d \gamma$, by the chain rule. Now we wish to find $(\alpha * \gamma) * \beta=(\alpha * \gamma) \wedge \beta+d(\alpha * \gamma) \wedge d \beta$. We calculate:

$$
(\alpha * \gamma) \wedge \beta=\gamma f_{0} g_{0}+g_{0} d f_{0} \wedge d \gamma+\gamma g_{0} f_{1} d x \wedge d y
$$

Now we calculate $d(\alpha * \gamma) \wedge d \beta$:

$$
d(\alpha * \gamma) \wedge d \beta=\gamma d f_{0} \wedge d g_{0}+f_{0} d \gamma \wedge d g_{0}
$$

We calculate:

$$
\alpha * \gamma * \beta=\gamma f_{0} g_{0}+\gamma\left(g_{0} f_{1} d x \wedge d y+d f_{0} \wedge d g_{0}\right)+d \gamma \wedge\left(f_{0} d g_{0}-g_{0} d f_{0}\right) .
$$

It is easy to see that each term of $g d x \wedge d y=\gamma\left(g_{0} f_{1} d x \wedge d y+d f_{0} \wedge d g_{0}\right)+d \gamma \wedge\left(f_{0} d g_{0}-g_{0} d f_{0}\right)$ has a power of x^{m-1} or y^{m-1}, as $\gamma=x^{m}+y^{m}$ and $d \gamma=m\left(x^{m-1} d x+y^{m-1} d y\right)$. Thus, $\phi\left(x^{i} y^{j} u\right)$ and the ideal generated by $\phi\left(x^{m}+y^{m}\right)$ have no intersection in $\Omega^{\text {even }}\left(\mathbb{Q}^{2}\right)_{*}$, so $x^{i} y^{j} u$ is independent in A / M_{3}.

By Lemmas 6.4, 6.5, and 6.6, we have proved that $x^{i} y^{j}$ for $0 \leq i<m$ and $x^{i} y^{j} u$ for $i, j<m-1$ are the basis of A / M_{3}, and $x^{i} y^{j} u$, and using the short exact sequence, $x^{i} y^{j} u$ is the basis of $N_{2}(A)$. We now count the number of generators by degree in $N_{2}(A)$ to verify Proposition 4.1.

6.3 Counting $x^{i} y^{j} u$ in $N_{2}(A)$

We wish to count the number of generators $x^{i} y^{j} u$ for $i, j<m-1$ in N_{2}, where x and y are of degree 1 , and u is of degree 2. The maximum degree of $x^{i} y^{j} u$ is $2 m-2$, as $i, j<m-1$. Let k be the degree in which we are counting generators. We count by two cases and use the short exact sequence to find $\operatorname{dim}\left(N_{2}[k]\right)$.

Case 1. $k \geq 2 m-1$
Because the maximum degree of $x^{i} y^{j} u$ is $2 m-2$, there will be no $x^{i} y^{j} u$ for $k \geq 2 m-1$.
Case 2. $k \leq 2 m-2$
For the maximum degree $2 m-2, i=j=m-2$. Because u is of degree 2, we also know that $i+j=k-2$. So we wish to solve for i and j for $0 \leq i, j \leq m-2$. Because $j \leq m-2$, $k-2-i \leq m-2$ and $i \geq k-m$. For $k<m, 0 \leq i \leq k-2$ has $k-1$ solutions. For $m \leq k \leq 2 m-2$, $k-m \leq i \leq m-2$ has $2 m-k-1$ solutions, which confirms the results of Proposition 4.1.

7 Conclusion

We have carefully examined the ranks and torsion of N_{i} for several classes of relations. Using a program in Magma, we generated data which we examined for patterns in the structure of N_{i}. In particular, we looked at homogeneous relations in two variables $\left(x^{m}+y^{m}\right), q$-polynomials ($y x-q x y$), and x^{2} in multiple variables. We discovered patterns in all of these relations and provided a full proof of the ranks of $N_{2}\left(A_{2} /\left(x^{m}+y^{m}\right)\right)$ and a complete description of the behavior of N_{i} for the
q-polynomial algebra. These results illustrate how the degree and coefficients in a homogeneous relation can affect the ranks and torsion of N_{i} of the algebra with that relation, particularly with regard to which primes appear in torsion.

There remains much to study about the structure of N_{i}. For example, the pseudo-arithmetic pattern in the ranks of the N_{3} and N_{4} (Conjectures 4.3.1 and 4.3.2) with relation $x^{m}+y^{m}$ is yet to be proved, perhaps with previous results [3]. The pattern found in N_{2} for that relation matches the one found in B_{2}, which suggests a natural isomorphism $B_{2} \rightarrow N_{2}$, at least over \mathbb{Q}. We plan to show that this mapping is an isomorphism by using the description of A / M_{3} by generators and relations.

In addition, the behavior of torsion can be studied for $x^{2}=0$ of multiple variables, and in particular, Conjecture 4.1.1 could be proved. More work could be done in discovering which primes appear in the torsion, and why they appear.

The study of N_{i} and its structure has applications in the study of commutativity in groups and rings, and it can be used to study maps between groups. It also has connections in cyclic cohomology. Studying N_{i} can help us build a better understanding of the structure of a general associative algebra. Outside of its mathematical implications, the lower central series has wider applications, as noncommutative algebras often appear in quantum theory, so studying lower central series ideas can help build our fundamental understanding of the universe, as well as bring about the technological advancements quantum theory promises.

8 Acknowledgments

I would like to acknowledge my mentor Mr. Teng Fei and Professor Pavel Etingof (Massachusetts Institute of Technology), who suggested the problem. Their guidance has been invaluable in the completion of this project. I would also like to thank the MIT math department for being so welcoming, particular Tanya Khovanova, who provided me with excellent direction on math research.

I would like to thank Dr. John Rickert for his help in writing papers, as well as all the feedback he gave me. In addition, I would like to thank Sitan Chen for his time in helping me revise my paper.

I would like to acknowledge the Center for Excellence in Education and the Research Science Institute (RSI) for providing me the opportunity to conduct research.

Finally, I would like to extend my gratitude to Dr. Samuel Gilbert, Dr. Elisabeth Vrahoupoulou, Mr. Ken Panos from Aerojet, and Mr. Zachary Lemnios, Dr. Laura Adolfie, Dr John Fischer, and Dr. Robin Staffin from the United States Department of Defense for sponsoring my stay at RSI and making my research possible.

A Data Tables

The tables contain the free and torsion components of $N_{i}[d]$, with the relation used in the caption.
A. $1 \mathbb{Z}\langle x, y\rangle /(y x-q x y)$

$N_{i}[d]$	2	3	4	5	6	7	8	9	10	11
N_{2}	1	$0\left(3^{2}\right)$	$0\left(3^{3}\right)$	$0\left(3^{4}\right)$	$0\left(3^{5}\right)$	$0\left(3^{6}\right)$	$0\left(3^{7}\right)$	$0\left(3^{8}\right)$	$0\left(3^{9}\right)$	$0\left(3^{10}\right)$
N_{3}	0	2	$0\left(3^{3}\right)$	$0\left(3^{4}\right)$	$0\left(3^{5}\right)$	$0\left(3^{6}\right)$	$0\left(3^{7}\right)$	$0\left(3^{8}\right)$	$0\left(3^{9}\right)$	$0\left(3^{10}\right)$
N_{4}	0	0	3	$0\left(3^{4}\right)$	$0\left(3^{5}\right)$	$0\left(3^{6}\right)$	$0\left(3^{7}\right)$	$0\left(3^{8}\right)$	$0\left(3^{9}\right)$	$0\left(3^{10}\right)$
N_{5}	0	0	0	4	$0\left(3^{4} \cdot 9\right)$	$0\left(3^{6}\right)$	$0\left(3^{7}\right)$	$0\left(3^{8}\right)$	$0\left(3^{9}\right)$	$0\left(3^{10}\right)$
N_{6}	0	0	0	0	5	$0\left(3^{6}\right)$	$0\left(3^{7}\right)$	$0\left(3^{8}\right)$	$0\left(3^{9}\right)$	$0\left(3^{10}\right)$
N_{7}	0	0	0	0	0	6	$0\left(3^{7} \cdot 5\right)$	$0\left(3^{8}\right)$	$0\left(3^{9}\right)$	$0\left(3^{10}\right)$
N_{8}	0	0	0	0	0	0	7	$0\left(3^{7} \cdot 9\right)$	$0\left(3^{9}\right)$	$0\left(3^{10}\right)$
N_{9}	0	0	0	0	0	0	0	8	$0\left(3^{9} \cdot 11\right)$	$0\left(3^{10}\right)$
N_{10}	0	0	0	0	0	0	0	0	9	$0\left(3^{10}\right)$

Table 9: $y x+2 x y$

$N_{i}[d]$	2	3	4	5	6	7	8	9	10
N_{2}	1	$0\left(4^{2}\right)$	$0\left(4^{3}\right)$	$0\left(4^{4}\right)$	$0\left(4^{5}\right)$	$0\left(4^{6}\right)$	$0\left(4^{7}\right)$	$0\left(4^{8}\right)$	$0\left(4^{9}\right)$
N_{3}	0	2	$0\left(4^{2} \cdot 8\right)$	$0\left(4^{4}\right)$	$0\left(4^{5}\right)$	$0\left(4^{6}\right)$	$0\left(4^{7}\right)$	$0\left(4^{8}\right)$	$0\left(4^{9}\right)$
N_{4}	0	0	3	$0\left(4^{4}\right)$	$0\left(4^{5}\right)$	$0\left(4^{6}\right)$	$0\left(4^{7}\right)$	$0\left(4^{8}\right)$	$0\left(4^{9}\right)$
N_{5}	0	0	0	4	$0\left(4^{3} \cdot 7 \cdot 8\right)$	$0\left(4^{6}\right)$	$0\left(4^{7}\right)$	$0\left(4^{8}\right)$	$0\left(4^{9}\right)$
N_{6}	0	0	0	0	5	$0\left(4^{6}\right)$	$0\left(4^{7}\right)$	$0\left(4^{8}\right)$	$0\left(4^{9}\right)$
N_{7}	0	0	0	0	0	6	$0\left(4^{4} \cdot 5 \cdot 8^{2} \cdot 16\right)$	$0\left(4^{8}\right)$	$0\left(4^{9}\right)$
N_{8}	0	0	0	0	0	0	7	$0\left(4^{8} \cdot 7^{2}\right)$	$0\left(4^{9}\right)$
N_{9}	0	0	0	0	0	0	0	8	$0\left(4^{5} \cdot 8^{4} \cdot 61\right)$
N_{10}	0	0	0	0	0	0	0	0	9
N_{11}	0	0	0	0	0	0	0	0	0

Table 10: $y x+3 x y$

$N_{i}[d]$	2	3	4	5	6	7	8	9	10	11
N_{2}	1	$0\left(5^{2}\right)$	$0\left(5^{3}\right)$	$0\left(5^{4}\right)$	$0\left(5^{5}\right)$	$0\left(5^{6}\right)$	$0\left(5^{7}\right)$	$0\left(5^{8}\right)$	$0\left(5^{9}\right)$	$0\left(5^{10}\right)$
N_{3}	0	2	$0\left(3 \cdot 5^{3}\right)$	$0\left(5^{4}\right)$	$0\left(5^{5}\right)$	$0\left(5^{6}\right)$	$0\left(5^{7}\right)$	$0\left(5^{8}\right)$	$0\left(5^{9}\right)$	$0\left(5^{10}\right)$
N_{4}	0	0	3	$0\left(5^{4}\right)$	$0\left(5^{5}\right)$	$0\left(5^{6}\right)$	$0\left(5^{7}\right)$	$0\left(5^{8}\right)$	$0\left(5^{9}\right)$	$0\left(5^{10}\right)$
N_{5}	0	0	0	4	$0\left(3^{2} \cdot 5^{5} \cdot 13\right)$	$0\left(5^{6}\right)$	$0\left(5^{7}\right)$	$0\left(5^{8}\right)$	$0\left(5^{9}\right)$	$0\left(5^{10}\right)$
N_{6}	0	0	0	0	5	$0\left(5^{6}\right)$	$0\left(5^{7}\right)$	$0\left(5^{8}\right)$	$0\left(5^{9}\right)$	$0\left(5^{10}\right)$
N_{7}	0	0	0	0	0	6	$0\left(3^{3} \cdot 5^{7} \cdot 17\right)$	$0\left(5^{8}\right)$	$0\left(5^{9}\right)$	$0\left(5^{10}\right)$
N_{8}	0	0	0	0	0	0	7	$0\left(5^{8} \cdot 13^{2}\right)$	$0\left(5^{9}\right)$	$0\left(5^{10}\right)$

Table 11: $y x+4 x y$
A. $2 \mathbb{Z}\langle x, y\rangle /\left(x^{m}+y^{m}\right)$

Table 13: $x^{3}+y^{3}$

$N_{i}[d]$	1	2	3	4	5	6	7	8	9
N_{2}	0	1	2	3	$2\left(4^{2}\right)$	$1\left(4^{3}\right)$	$0\left(4^{4}\right)$	$0\left(4^{4}\right)$	$0\left(4^{4}\right.$
N_{3}	0	0	2	5	8	$7\left(2 \cdot 4^{3}\right)$	$4\left(2^{2} \cdot 4^{6}\right)$	$1\left(2^{4} \cdot 4^{7}\right)$	$0\left(2^{4} \cdot 4^{8}\right)$
N_{4}	0	0	0	3	8	$13(2 \cdot 5)$	$10\left(2^{8} \cdot 3^{2} \cdot 4^{4} \cdot 5^{2}\right)$	$4\left(2^{7} \cdot 3^{4} \cdot 4^{12} \cdot 5^{2}\right)$	$0\left(2^{1} 0 \cdot 3^{4} \cdot 4^{14}\right)$
N_{5}	0	0	0	0	6	18	$30\left(2^{2} \cdot 5^{2}\right)$	$26\left(2^{13} \cdot 3^{4} \cdot 4^{8} \cdot 5^{5}\right)$	$12\left(2^{26} \cdot 3^{2} \cdot 4^{18} \cdot 5^{6}\right)$
N_{6}	0	0	0	0	0	9	30	$49\left(2^{4} \cdot 4^{3} \cdot 5^{5}\right)$	$38\left(2^{26} \cdot 3^{10} \cdot 4^{20} \cdot 5^{12}\right)$
N_{7}	0	0	0	0	0	0	18	63	$106\left(2^{12} \cdot 4^{3} \cdot 5^{10}\right)$
N_{8}	0	0	0	0	0	0	0	30	$110\left(2^{2}\right)$

Table 14: $x^{4}+y^{4}$

References

[1] Martina Balagovic and Anirudha Balasubramanian. On the lower central series of a graded associative algebra. Journal of Algebra, 328:287-300, 2011.
[2] Wieb Bosma, John Cannon, and Catherine Playoust. The magma algebra system. i. the user language. J. Symbolic Output., 24(3-4):235-265, 1997.
[3] Pavel Etingof, John Kim, and Xiaoguang Ma. On universal lie nilpotent associative algebras. Journal of Algebra, 321:697-703, 2009.
[4] Boris Feigin and Boris Shoikhet. On $[A, a] /[a,[a, a]]$ and on a w_{n}-action on the consecutive commutators of free associative algebras. Math. Res. Lett., 14(5):781-795, 2007.
[5] George Kerchev. On the filtration of a free algebra by its associative lower central series. preprint, $\operatorname{arXiv}(1101.5741 \mathrm{v} 1), 2011$.

