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Abstract. In this paper we study the lower central series {Li}i≥1 of algebras

with polynomial identities. More specifically, we investigate the properties of

the quotients Ni = Mi/Mi+1 of successive ideals generated by the elements
Li. We give a complete description of the structure of these quotients for the

free metabelian associative algebra A/(A[A,A][A,A]). With methods from

Polynomial Identities theory, linear algebra and representation theory we also
manage to explain some of the properties of larger classes of algebras satisfying

polynomial identities.

1. Summary

In this paper we consider algebraic structures which are not commutative, i.e. the
order of operations matters. Such structures are derived from quantum physics and
have various applications. In contrast, commutative structures appear in classical
physics and thus are better studied. We construct a series called the lower central
series which indicates the level of non-commutativity of an algebraic structure.
Our main result is a comprehensive description of important objects related to the
lower central series of the so called algebras with polynomial identities.

2. Introduction

The lower central series is a specific type of filtration of groups or algebras which
is of fundamental importance in group theory and non-commutative algebra. In
this paper we study the lower central series of Lie algebras. More specifically, we
consider the lower central series of free associative algebras with the additional
structure of Lie algebras induced by means of the commutator. Recently, there
has been substantial progress on the study of the properties of these filtrations
and their successive quotients ([7], [4], [6], [3]). For an associative algebra A, the
lower central series quotients have been seen to be related to both the geometry of
Spec(Aab), the spectrum of the abelianization of A, and the representation theory
of Der(A), the Lie algebra of derivations of A. Completely understanding the lower
central series of A and the information it encodes remains an elusive open problem.

Let A be an associative algebra over C with n generators. Set L1(A) := A and
define recursively Li(A) = [A,Li−1(A)], where the bracket operation is given by
the commutator [a, b] = ab − ba for a, b ∈ A. Several series of quotients help us
understand how far A is from being a commutative algebra. In this paper we are
interested in the quotient series

{Bi(A) = Li(A)/Li+1(A)}i≥1 and {Ni(A) = Mi(A)/Mi+1(A)}i≥1,
where Mi(A) is the two-sided ideal generated by Li(A). The quotients Bi(A) were
first studied by Feigin and Shoikhet [7]. They found an isomorphism between the
space A/M3(A) and the space of closed differential forms of positive even degree on
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Cn. Etingof, Kim and Ma [6] gave an explicit description of the quotients A/M4(A).
Dobrovolska, Kim, Ma and Etingof also studied the series Bi [3, 4].

In this paper we are interested in algebras that satisfy polynomial identities or
PI-algebras. M. Dehn [2] first considered PI-algebras in 1922. His motivation came
from projective geometry. Specifically, Dehn observed that if the Desargues theorem
holds for a projective plane, we can build this plane from a division ring. Later, in
1936, W. Wagner [16] considered some identities for the quaternion algebras. The
actual development of the theory of PI-algebras started with fundamental works
of N. Jacobson and I. Kaplansky in 1947–48 ([10], [12]). In PI theory we consider
several types of problems. Some of the feasible questions which we ask are about the
structure of the identities satisfied by a given algebra, the classes of algebras which
satisfy these identities, and the ideals generated by them. We consider PI-algebras
as algebraic structures with induced identities on them. For more complete surveys
on PI-algebras see the works of Drensky [5], Koshlukov [13] and Jacobson [11].

We study for the first time the lower central series of PI-algebras. More specif-
ically, we are interested in the large classes of PI-algebras — algebras of the form
A/(Mi(A) ·Mj(A)) and A/(A[Li(A), Lj(A)]). To explain the motivation behind
studying PI-algebras, consider the case when A is finitely generated by n elements.
Feigin and Shoikhet [7] describe an action of Wn, the Lie algebra of polynomial vec-
tor fields on Cn, on the lower central series quotients of A. Therefore, the quotients
Bi(A) can be considered in terms of the well-understood representation theory of
Wn ([7], [6], [3]). The PI-Algebras A/(Mi(A) ·Mj(A)) are of particular interest in
this setting because the structure of the commutator ideals Mi allows the action of
Wn to descend to these quotients. In particular, we hope to understand the lower
central series quotients in terms of the representation theory of Wn.

In this paper we prove the isomorphism Ni(A/(Mm(A) ·Ml(A))) ∼= Ni(A) for i
large enough. We show that Bi and Ni are isomorphic for some specific algebras.
Our main result is the description of the structure of the quotient elements Bi and
Ni for the free metabelian associative algebra R2,2, which is the associative PI-
algebra whose only relations are of the form [a, b][c, d] = 0. We describe the basis
for the elements Ni(R2,2) and consider the growth of the dimensions of the graded
components for any number of generators. We use techniques from PI theory, linear
algebra and representation theory to prove our results.

The structure of this paper is as follows. In Section 3 we present the basic
definitions we need. In Section 4 we explain how we used computer calculations as
a basis for our conjectures. In Section 5 we consider the isomorphisms

Ni(A/(Mm(A) ·Ml(A))) ∼= Ni(A) and Ni ∼= Bi.

In Section 6 we prove our main results. Namely, we give a complete description of
the lower central series properties of the free metabelian associative algebra R2,2.
In Section 7 we formulate a conjecture which concerns the universal behavior of
the lower central series quotients for the PI-algebras we consider. In Section 8
we present some additional results concerned with the action of the general linear
group.

3. Preliminaries

In this section we introduce basic definitions used throughout the paper.
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All vector spaces will be over a field K of characteristic zero. If an algebra A
is equipped with an associative multiplication and has a multiplicative identity,
then we say that A is a unitary associative algebra. We denote the free associative
algebra on n generators x1, . . . , xn as An. The bracket or commutator

[, ] : A×A→ A

is [a, b] = ab− ba, where a, b ∈ A. We consider the algebra A as a Lie algebra with
this bracket multiplication. See Appendix A for more detailed exposition on the
basic definitions.

Definition 3.1. The lower central series of an algebra A is the series of elements
{Li(A)}i≥1 defined by L1(A) = A and Li(A) = [A,Li−1(A)] for i ≥ 1.

We consider the series {Mi(A)}i≥1 of the two-sided ideals generated by Li, i.e.
Mi(A) = A · Li(A) · A. Due to the identity [B, cd] + c[d,B] = [B, c]d for B ∈ Li−1
and c, d ∈ A, the two-sided ideal Mi is actually a left-sided (right-sided) one.

Definition 3.2. Let the series {Ni(A)}i≥1 be the quotients of successive elements
in the series {Mi(A)}i≥1, i.e.

Ni(A) = Mi(A)/Mi+1(A).

A closely related series of quotients are the B-series {Bi(A)}i≥1, which we define
as

Bi(A) = Li(A)/Li+1(A).

In this paper we consider the lower central series of algebras with polynomial
identities.

Definition 3.3. For a polynomial f = f(x1, . . . , xm) in the free associative algebra
A, f is a polynomial identity for an associative algebra R if f(r1, . . . , rm) = 0 for
all elements rj of R.

If an associative algebra R satisfies a nontrivial polynomial identity, we say
that R is a PI-algebra. We also study PI-algebras with identities of the form
[a1, . . . , ai][b1, . . . , bj ], where the a-elements and the b-elements are arbitrarily cho-
sen from A.

Definition 3.4. Let Ri,j(A) denote the algebra Ri,j(A) = A/(Mi(A) ·Mj(A)).

In PI theory these objects are known as the relatively free algberas in the class
Mi,j of algebras satisfying the identities of the form [a1, . . . , ai][b1, . . . , bj ] (see [5]).

The main goal of this paper is to provide a complete description of the lower
central series structure of R2,2(A). This algebra is special in PI theory and we
call it the free metabelian associative algebra defined in the class M = M2,2 of
all algebras, satisfying the metabelian identity [a, b][c, d] = 0. For convenience, we
write Ri,j instead of Ri,j(A) when we work with the free associative algebra A = An
on n generators.

We are also interested in the relatively free PI-algebras which satisfy

[[a1, . . . , ai], [b1, . . . , bj ]] = 0.

These algebras are of the form A/(A · [Li(A), Lj(A)]) and we write

Si,j(A) = A/(A · [Li(A), Lj(A)]).

We may omit the algebra A in the notation and write Si,j only.
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4. Patterns in the lower central series of PI-algebras

The elements Ni(Rm,l) are naturally graded by degree, i.e.

Ni(Rm,l) =
⊕
d≥0

Ni(Rm,l)[d],

where Ni(Rm,l)[d] is the subspace of Ni(Rm,l) which consists of all elements of
degree d. The elements Bi(Rm,l) exhibit the following analogous grading

Bi(Rm,l) =
⊕
d≥0

Bi(Rm,l)[d].

The results in this project are motivated by computational data, which describes
the dimensions of the components of the gradings. We use the software MAGMA.
The first part of the research was to state a large number of conjectures about the
behavior of the algebras Ri,j and Si,j . We managed to unify most of the them (see
Appendix B as well).

We consider representatives of the classes Ri,j and Si,j . With Ni(R)[d] we denote
the subspace of degree d in the grading of the space Ni(R). In Appendix B we
give tables of dimNi(R)[d] for different algebras. There we explicitly describe the
patterns we have found. In this section we present some of the patterns for the free
metabelian associative algebra.

Element in the series: Degrees of grading:

Ni[d] 0 1 2 3 4 5 6 7 8 9

N2[d] 0 0 1 2 3 4 5 6 7 8
N3[d] 0 0 0 2 4 6 8 10 12 14
N4[d] 0 0 0 0 3 6 9 12 15 18
N5[d] 0 0 0 0 0 4 8 12 16 20
N6[d] 0 0 0 0 0 0 5 10 15 20
N7[d] 0 0 0 0 0 0 0 6 12 18
N8[d] 0 0 0 0 0 0 0 0 7 14
N9[d] 0 0 0 0 0 0 0 0 0 8

Table 1. Calculations for R2,2.

Table 1 presents the degrees of the components in the gradings of the element
Ni(R2,2). We observe arithmetic progressions in the rows and we prove them in
Section 6.

As one can see, the information in Table 2 is the same as the one in Table 1. For
this reason we search for and prove isomorphisms between the elements Bi and Ni
for the algebras Rm,2, where m ≥ 2.

5. General behavior of the lower central series of the algebras Ri,j
and Si,j

In this section we consider some general properties of the classes of algebras
{Ri,j} and {Si,j}. There is an isomorphism between the first elements of the N -
series and the first elements of the respective series for the free associative algebra.
We prove results which let us obtain a connection with the known structure of the
N -series for the free associative algebra.
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Element in the series: Degrees of grading:

Bi[d] 0 1 2 3 4 5 6 7 8 9

B2[d] 0 0 1 2 3 4 5 6 7 8
B3[d] 0 0 0 2 4 6 8 10 12 14
B4[d] 0 0 0 0 3 6 9 12 15 18
B5[d] 0 0 0 0 0 4 8 12 16 20
B6[d] 0 0 0 0 0 0 5 10 15 20
B7[d] 0 0 0 0 0 0 0 6 12 18
B8[d] 0 0 0 0 0 0 0 0 7 14
B9[d] 0 0 0 0 0 0 0 0 0 8

Table 2. Calculations for R2,2.

In [9] Gupta and Levin prove the following result

Theorem 5.1 (Gupta and Levin, 1983). Given m, l ≥ 2 and an arbitrary algebra
A, we have that

Mm(A) ·Ml(A) ⊂Mm+l−2(A).

This bound can be improved for a specific type of pairs (m, l). Etingof, Kim and
Ma [6] called a pair of natural numbers (m, l) a null pair if for every algebra A we
have that Mm(A) ·Ml(A) ⊂Mm+l−1(A). They conjectured that a pair (m, l) is null
if and only if either m or l is odd. Bapat and Jordan [1] confirmed this conjecture
and established the following result

Theorem 5.2 (Bapat and Jordan). A pair (m, l) is a null pair if and only if m or
l is an odd number.

Here we describe the main results which establish a connection with the free
algebra.

Theorem 5.3. Consider the algebra Rm,l. The space Ni(Rm,l) is isomorphic to
Ni(A) for i ≤ m+l−2. If the tuple (m, l) is a null one, then Ni(Rm,l) is isomorphic
to Ni(A) for i ≤ m+ l − 1.

Proof. From Theorem 5.1 we get Mm(A) ·Ml(A) ⊂Mm+l−2(A). Theorem 5.2 gives
usMm(A)·Ml(A) ⊂Mm+l−1(A) for the null pair (m, l). Thus, consider the filtration

(1) M1(A) ⊃ · · · ⊃Mm+l−r−1 ⊃Mm+l−r ⊃Mm(A) ·Ml(A)

where r is two in the general case and one in the case of (m, l) being null.
For convenience, let us denote with Im,l(A) = Im,l the ideal Mm(A) ·Ml(A).

Now, let us consider the elements Ni. On the one hand, by definition

Ni(A) = Mi(A)/Mi+1(A).

On the other hand, for the PI-algebra Rm,l we have that

Ni(Rm,l) = Mi(Rm,l)/Mi+1(Rm,l) = Mi(A/Im,l)/Mi+1(A/Im,l),

which is equivalent to Ni(Rm,l) = (Mi(A) + Im,l) / (Mi+1(A) + Im,l) . If Im,l is a
subspace of the two-sided ideal Mj(A) for some j, then Mj(A) + Im,l = Mj(A).
From Equation (1) we have that Im,l ⊂Mj(A) for j ≤ m+ l− r. Hence, we obtain
isomorphic elements Mj and consecutively isomorphic quotients; so Ni ∼= Ni(Rm,l)
for i ≤ m+ l − r. The last argument completes the proof.
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There are some specific cases when we can strengthen the known results for the
properties of null pairs. For instance (2, 2) is not a null pair, however, the following
statement holds

Proposition 5.4. The following inclusions are satisfied

(M2(A2))2 ⊂M3(A2) and (M2(A3))2 ⊂M3(A3).

Proof. Let us consider the free associative algebra An with n ≤ 3. Note that the
ideal M2(An) is generated as a two-sided ideal by the elements of the form [xi, xj ]
(see [6]). Therefore, all the elements of the form

a[xi, xj ]b[xk, xl]c

generate our space M2(An), where a, b and c are arbitrary elements in our algebra.
Furthermore, as a two sided ideal, we span the space M2(An) simply by the elements
in the generating set G = {[xi, xj ]r[xk, xl]|r ∈ An}. Let us take an element

g = [xi, xj ]r[xk, xl]

in the generating set G. Due to the fact that n is less than four, we have that two
of the indices of the variables are equal. If i = j or k = l, then g equals zero and it
is in the ideal M3(An). If not, without loss of generality, we consider i = k. Recall
the identity

(2) [b, cd] + c[d, b] = [b, c]d

for arbitrary elements a, b, c and d in An. We apply Equation (2) for the first two
factors in the element g to get

g = [xi, xjr][xk, xl] + xj [r, xi][xk, xl].

Now, we have that −g = [xjr, xi][xk, xl]−x2[r, xi][xk, xl] and we apply the identity

[a, b][b, c] = 3[ab, b, c]− 3[a, b, c]b+ [ac, b, b]− a[c, b, b]− [a, b, b]c

to obtain −g as a linear combination of elements in M3(An). The fact that g is in
the generating set G for M2(An) completes the proof.

We extend the same idea for more classes of PI-algebras. Using similar arguments
as in Theorem 5.3 we derive the following result.

Theorem 5.5. The space Ni(Sm,l) is isomorphic to Ni(A) for i ≤ m+ l−r, where
r is two in the general case and one in the case of (m, l) being a null pair.

Proof. Let us take an element m of the ideal A[Lm, Ll]. Suppose m = a[B,C] where
a ∈ A, B ∈ Lm and C ∈ Ll. We expand the commutator to get m = a·B·C−a·C ·B.
From Theorem 5.1 we have that a · B · C and a · C · B are in the ideal Mm+l−2.
Furthermore, Theorem 5.2 states that if (m, l) is a null pair, a ·B ·C and a ·C ·B
are in Mm+l−1. This means that m ∈ Mm+l−r, where r is two in the general case
and one if the pair (m, l) is a null one. Now, similarly to the proof of Theorem 5.3,
we consider

Ni(Sm,l) = Mi(Sm,l)/Mi+1(Sm,l) = (Mi(A) +A[Lm, Ll])/(Mi+1(A) +A[Lm, Ll]),

and from the above considerations we obtain

(Mi(A) +A[Lm, Ll])/(Mi+1(A) +A[Lm, Ll]) = Mi(A)/Mi+1(A) = Ni(A).

The proof is completed.
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5.1. Isomorphism between the B-series and the N-series. One of the most
important observations we made for the PI-algebras under consideration is that
Bi ∼= Ni for i large enough. Below we provide a proof of this statement. First, we
state a result by Bapat and Jordan [1].

Theorem 5.6 (Bapat and Jordan, 2010). For l odd and k arbitrary we have that

[Ml(A), Lk(A)] ∈ Lk+l(A).

We apply this theorem to prove the next lemma.

Lemma 5.7. The following holds

Li(A) +Mj(A) ·M2(A) = Mi(A) +Mj(A) ·M2(A),

for all even positive integers i such that i ≥ j + 1.

Proof. The inclusion Li(A) ⊂Mi(A) implies that

Li(A) +Mj(A) ·M2(A) ⊂Mi(A) +Mj(A) ·M2(A).

Since we know that the two-sided ideal Mi(A) is actually a one-sided ideal, we have
Mi(A) = [A,Li−1(A)] · A. Let [s, C]t be an arbitrary element of this ideal, where
s, t ∈ A and C ∈ Li−1(A). We apply the identity [b, cd]+ c[d, b] = [b, c]d with b = s,
c = C and d = t and obtain

[s, C]t = [s, Ct] + C[t, s].

Suppose i ≥ j + 1. Since C ∈Mi−1(A), we have that C[t, s] ∈Mj(A) ·M2(A).
Moreover, [s, Ct] is in [L1,Mi−1]. Suppose i is even. From Theorem 5.6 we get

that [s, Ct] ∈ Li. Therefore,

[s, Ct] + C[t, s] +Mj(A) ·M2(A) ∈ Li(A) +Mj(A) ·M2(A),

which implies

Li(A) +Mj(A) ·M2(A) ⊃Mi(A) +Mj(A) ·M2(A).

This completes the proof.

We use this result to prove a stronger statement.

Theorem 5.8. The following equality is satisfied

Li(A) +Mj(A) ·M2(A) = Mi(A) +Mj(A) ·M2(A)

for all positive integers i ≥ t, where t = 2
⌈
j+1
2

⌉
.

Proof. We have that Li(A) + Mj(A) ·M2(A) ⊂ Mi(A) + Mj(A) ·M2(A). We use
induction on the index i. Note that t is the smallest even number such that t ≥ j+1.
Hence, from Lemma 5.7 we have that the theorem is true for i = t. This is our base
case.

Now, suppose that the statement holds for every j′ such that j′ ≤ i and i ≥ t.
Take m = [b, C]a ∈Mi+1(A), where C is a commutator in Li. Therefore,

[b, C]a = [b, Ca]− C[b, a].

We have that C[b, a] ∈ Mj(A) ·M2(A). Consider [b, Ca], where Ca is in Mi(A).
We use the induction hypothesis and present Ca as d + m′, where d ∈ Li and
m′ ∈Mj(A) ·M2(A). Now, using the bilinearity of the Lie brackets we get

[b, Ca] = [b, d] + [b,m′].
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Furthermore, [b, d] ∈ Li+1(A) and [b,m′] ∈ Mj(A) ·M2(A). Hence, the statement
is true for i+ 1 as well. This completes the induction and the proof is finished.

We conclude the section with the Isomorphism Property statement which is the
main result.

Theorem 5.9 (Isomorphism Property). The following holds

Bi(Rj,2) ∼= Ni(Rj,2)

for all positive integers i ≥ t, where t = 2
⌈
j+1
2

⌉
.

Proof. By definition

Bi(Rj,2) = Li(Rj,2)/Li+1(Rj,2)

= (Li(A) +Mj(A) ·M2(A))/(Li+1(A) +Mj(A) ·M2(A)).

and

Ni(Rj,2) = Mi(Rj,2)/Mi+1(Rj,2)

= (Mi(A) +Mj(A) ·M2(A))/(Mi+1(A) +Mj(A) ·M2(A)).

From Theorem 5.8 we have that Li(A)+Mj(A)·M2(A) = Mi(A)+Mj(A)·M2(A).
We use this to complete the proof.

6. Complete description of Nr(R2,2).

In this section we consider the N -series of the free metabelian associative algebra.
First we start with a result about the structure of R2,2.

We use techniques similar to those used by Drensky who describes in his book
[5] a basis over a field of characteristic zero for R2,2.

Theorem 6.1 (Drensky, 1999). The elements in the set

E := {xa11 · · ·xann [xi1 , . . . , xir ]}

form a basis for R2,2, where aj ≥ 0 for 1 ≤ j ≤ n, i1 > i2, i2 ≤ · · · ≤ ir and
r = 1, 2, 3, . . .

Definition 6.2. For an element m of the form m = a · C · b, where a and b are
monomials in x1, x2, . . . , xn and C is a commutator, let l(m) denote the length of
the commutator C. We treat monomials in n variables as commutators of length
one.

For instance, l(x21x2) = 1; l(x1[x1, x2]x31x2) = 2; l(x1[x1, x2, x3]) = 3. We present
properties of the identities in the free metabelian associative algebra:

xy[a, b]− yx[a, b] = [x, y][a, b] = 0.

This leads us to xy[a, b] = yx[a, b] and it means that we can always order elements
which multiply the commutator to the left. Next, we consider the identity

Cx = xC + [C, x].

If C is a commutator we get that we can transform every right multiplication as a
sum of a left multiplication and a longer commutator. We note that

[a, bc] = b[a, c] + [a, b]c,
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which helps us reduce the degrees of certain monomials. Moreover, in the free
metabelian associative algebra

0 = [a, b][c, d]− [c, d][a, b] = [[a, b], [c, d]] = [a, b, c, d]− [a, b, d, c].

From this identity we get [a, b, rσ(1), . . . , rσ(m)] = [a, b, r1, . . . , rm], where σ ∈ Sn is
a permutation in the symmetric group Sn. This allows us to freely permute the
elements after the first two. The following lemma is important for the proofs of the
arguments in this section.

Lemma 6.3. Every element m of the form

m = b[[xi1 , . . . , xir ], c],

can be presented as a linear combination of elements ei of the basis E with length
l(ei) ≥ l(m), where i1 > i2 and i2 ≤ · · · ≤ ir.

Proof. Due to the bilinearity of the Lie bracket and the distributive property of
the polynomials, without loss of generality, we set b and c to be monomials. Now,
suppose c = xa1i1 · · ·x

am
im

. We prove the statement via induction on the total degree
a1 + · · ·+ am.

For deg c = 1 we have that c = xj is a variable in the set of n variables which gen-
erate the free associative algebra. Therefore, we have that m = b[xi1 , . . . , xir , xj ].
Now, we use the permutation properties of these brackets and the Jacobi identity
combined with the anticommutative law to present m of the form

m = b′[xj1 , . . . , xjr+1 ],

where j1 > j2 and j2 ≤ · · · ≤ jr+1. The base of the induction is proven.
Suppose that we have proven the statement for all monomials c′ with deg c′ ≤ i

and i ≥ 1. Consider the monomial c = xa1j1 · · ·x
ah
jh

with deg c = i+ 1. We have that

m = b[[xi1 , . . . , xir ], xa1j1 · · ·x
ah
jh

]

= b · xa1j1 · · ·x
ah−1
jh

[[xi1 , . . . , xir ], xjh ] + b[[xi1 , . . . , xir ], xa1j1 · · ·x
ah−1

jh
]xjh .

With proper permutations of the elements in the commutator we can present the
first element in the sum of the desired form. Hence,

l(b · xa1j1 · · ·x
ah−1
jh

[[xi1 , . . . , xir ], xjh ]) = l(m).

Now, for the second summand we have

b[[xi1 , . . . , xir ], xa1j1 · · ·x
ah−1

jh
]xjh = b · xjh [[xi1 , . . . , xir ], xa1j1 · · ·x

ah−1

jh
]

+ b[[xi1 , . . . , xir ], xa1j1 · · ·x
ah−1

jh
, xjh ].

For the first element in the sum we use the induction hypothesis because

deg xa1j1 · · ·x
ah−1

jh
= i.

For the second summand we permute the last two elements in the commutator and
use the induction hypothesis again. Thus, we prove the statement for deg c = i+ 1
as well, which completes our induction and proof respectively.

The next result is crucial for the proof of the main theorem (Theorem 6.5) in
this paper.
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Lemma 6.4. The following holds

Mi(R2,2) ⊂ span(xa11 · · ·xann [xi1 , . . . , xir ])

for every r ≥ i and aj ≥ 0 for j = 1, . . . , n.

Proof. We use induction on the index i. Note that M1(R2,2) = R2,2. For r ≥ 1
we have that span(xa11 · · ·xann [xi1 , . . . , xir ]) = R2,2 due to Theorem 6.1. Hence, the
statement is true for i = 1. We take an element m ∈ M2(R2,2) and present it as a
unique linear combination of elements of the basis E in the following manner

m =
∑
j

αjej ,

where αj ∈ k. We know that as a two-sided ideal M2(R2,2) is generated by {[xs, xt]}
(see [6]). Hence, m is of the form

∑
s,t a · [xs, xt] · b, where a and b are monomials.

Moreover, the sum of the element ej with αj 6= 0 and l(ej) ≥ 2 is also of the
form

∑
s,t a · [xs, xt] · b because these elements are in M2(R2,2). If we suppose that

there are elements ej with l(ej) = 1 we get that their sum should be of the form∑
s,t a · [xs, xt] · b, which is a contradiction. Therefore, the statement is true for

i = 2 as well. This case is the base case for the induction.
Suppose that we have proven the proposition for all j, such that j ≤ i and i ≥ 2.

Let us take m ∈ Mi+1(R2,2). Without loss of generality, we assume this element
is of the form m = a[b, C], where C is a commutator with l(C) = i and a, b being
monomials. We multiply by negative one and consider m as a′[C, b]. We have
that C ∈ Mi(R2,2) and we use the induction hypothesis to present it as a linear
combination of elements of the basis with length greater than or equal to i. Thus

m = a′

∑
j

ajCj , b

 ,
where {aj} are monomials in the variables x1, . . . , xn and {Cj} are the desired
commutators. Once again, due to bilinearity, we consider only the case

m = a′[a′′C ′, b] = a′a′′[C ′, b] + a′[a′′, b]C ′.

The second summand is zero in the free metabelian associative algebra R2,2 because
l(C ′) ≥ 2. For the first summand we have that l(a′a′′[C ′, b]) ≥ i+1. We use Lemma
6.3 for a′a′′[C ′, b] to complete the induction step and thus the proof of the lemma.

We continue with the most important result in this paper.

Theorem 6.5 (The Structure Theorem). For a fixed r ≥ 1 a basis for the elements
Nr(R2,2) is

{xa11 · · ·xann [xi1 , . . . , xir ]},
where aj ≥ 0 for 1 ≤ j ≤ n, i1 > i2 and i2 ≤ · · · ≤ ir in the commutators of length
r.

Proof. Consider the filtration of the elements Mi:

R2,2 ⊃M2(R2,2) ⊃M3(R2,2) · · · .
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We introduce the subspaces Qj , where Qj := span(xa11 · · ·xann [xi1 , . . . , xih ] | h ≥ j),
i.e. the span of the basis elements with commutator length greater than or equal
to j. Consider the filtration

R2,2 ⊃ Q2(R2,2) ⊃ Q3(R2,2) · · · .
On the one hand, Qi(R2,2) ⊂Mi(R2,2) because every commutator of length greater
than or equal to i is in Mi(R2,2). On the other hand, from Lemma 6.4 we get that
Mi(R2,2) ⊂ Qi(R2,2). Thus Qi(R2,2) = Mi(R2,2) and we have that the filtration of
the elements Qi is compatible with the one of the elements Mi. The definition of
Ni(R2,2) implies

Ni(R2,2) = Mi(R2,2)/Mi+1(R2,2) = Qi(R2,2)/Qi+1(R2,2).

The statement of the theorem follows from the fact that a basis for Qj(R2,2) is
{xa11 · · ·xann [xi1 , . . . , xir ]}, for i1 > i2, i2 ≤ · · · ≤ ir and r = j, j + 1, j + 2, . . .

The elements Nr exhibit a natural grading of the form

Nr(R2,2) =
⊕
d≥0

Nr(R2,2)[d],

where the subspace Nr(R2,2)[d] is spanned by all of the elements e of the basis E
with deg e = d.

This way we may try to find the structure of the elements Nr in terms of finite
dimensions. The following combinatorial results confirm the conjectures of the
patterns for the free metabelian associative algebra.

Corollary 6.6. For the behavior of the elements Nr(R2,2) we have that

dim(Nr(R2,2)[d]) ∼ cr,ndn−1,
where cr,n is a constant as d tends to infinity.

Proof. We count the number of elements of degree d of the form

xa11 · · ·xanm [xi1 , . . . , xir ],

where r ≥ 1, aj ≥ 0 for 1 ≤ j ≤ n, i1 > i2 and i2 ≤ · · · ≤ ir in the commutators of
fixed length r. For this purpose, we consider a vector space with proper grading.
It generates a Hilbert series which leads to the desired result. Let V be the vector
space over a field of characteristic zero with basis all the commutators [xi1 , . . . , xir ],
where i1 > i2 and i2 ≤ · · · ≤ ir for all r = 1, 2, . . . The space V has a natural
multigrading if we take into account the degree of each variable in the commutators:
V =

⊕
t V

(t1,...,tn). The Hilbert series of V is

Hilb(V, z1, . . . , zn) =

(
n∑
i=1

zi − 1

)
n∏
j=1

1

1− zj
.

Therefore, for normal grading we get Hilb(V, z) = (nz − 1)/(1− z)n and since the
degree of the commutator is r,

(3) dim(Nr(R2,2)[d]) =

(
[zr]

nz − 1

(1− z)n

)(
d− r + n− 1

n− 1

)
,

where
(

[zr] nz−1(1−z)n

)
is the coefficient in front of the n-th power of the formal power

series (nz−1)/(1−z)n. Now, we estimate Equation (3) asymptotically to complete
the proof.
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Note that this result is compatible with the conjectures for the cases of two and
three variables. One just has to expand the formal power series (nz−1)/((1−z)n).

7. Universal hypothesis about the behavior of the lower central
series quotients of PI-algebras

In [7] Feigin and Shoikhet consider the action of Wn on the lower central series
quotients of the algebra An. Moreover, these quotients are Wn-modules which are
finite in length. We can describe the structure of the elements Nr(Ri,j) in terms of
irreducible representations appearing in the Jordan-Hölder decomposition of Nr.

The algebras Ri,j and Si,j are interesting because the structure of their commu-
tator ideals allows the action of Wn to descend to an action on the lower central
series quotients for Ri,j and Si,j as well. From basic facts of the representation
theory of Wn we have that for a fixed r, the dimensions of the quotient components
Br[d] and Nr[d] are polynomials in d for d large enough. This, however, is not
always true for small values of d.

From Theorem 6.5 we get that

Nr(R2,2) = F(r−1,1,0,...,0)

as a Wn-module, where F(r−1,1,0,...,0) is a single irreducible representation of Wn

of rank r. This confirms the observations in Table 1 and Table 2. As one can see,
the sequences in the rows behave like arithmetic progressions. We determine the
irreducible module by considering the degrees of the basis elements described in
Theorem 6.5. In Appendix B we present tables for several other algebras. It would
be interesting to prove the following conjecture, about the universal behavior of the
elements Nr(Rm,l).

Conjecture 7.1 (Universal Behavior). Given r > m+ l, the Jordan-Hölder series
for Nr(Rm,l) consists only of irreducible Wn-modules of rank r.

8. Additional results. Representation theory of GLn(K)

In this section we present additional results on the structure of the N -series of
the algebras Ri,j . First, we need to introduce some new terminology of polynomial
identities.

8.1. Some more PI-theory. Let us consider {fi(x1, . . . , xn) ∈ An} — a set of
polynomials in the free associative algebra An. We denote with a variety defined
(determined) by the system of polynomial identities {fi | i ∈ I} the class D of all
associative algebras satisfying all of the identities fi = 0, i ∈ I. We call a variety
M a subvariety if M ⊂ D.

Definition 8.1. We denote with T (D) the set of all identities satisfied by the
variety D and call it the T -ideal of D.

Hence, we can see that the elements Mi(A) (i ≥ 2) are T -ideals of the corre-
sponding classes (varieties) Mi of all algebras satisfying the identity [a1, . . . , ai] = 0.
Furthermore, their products Mi(A) ·Mj(A) are also T -ideals of the corresponding
varieties Mi,j satisfying [a1, . . . , ai][b1, . . . , bj ] = 0. Thus we can translate results
on T -ideals in the language of the M -ideals. This will be particularly useful, since
the algebras we consider, Ri,j , have the structure of the free associative algebra
factored by a specific T -ideal.
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Definition 8.2. For the generating set Y the algebra FY (D) in the variety D is
called a relatively free algebra of D (or a D-free algebra) if FY (D) is free in the
class D (and is freely generated by Y ).

Such algebras exist and are comprehensively studied in [5]. Two relatively free
algebras of the same rank are isomorphic. Thus, if the rank of FY (D) is n, we may
simply write Fn(D). It is known that the free metabelian associative algebra R2,2 is
the algebra Fn(M2,2) — the relatively free algebra of the variety M2,2 of algebras
satisfying [a, b][c, d] = 0. Moreover, the free algebras Fn(Mi,j) are equivalent to
Ri,j in our language.

Definition 8.3. A polynomial f in the free associative algebra An is called proper
if it is a linear combination of products of commutators. We denote with Pn(A)
the set of all proper polynomials in A.

Let us take a PI-algebra Ri,j . In a similar way, we define Pn(Ri,j) to be the image
in Ri,j of the vector subspace Pn(A). When we know the number of variables, we
may simply write P (Ri,j) = Pn(Ri,j) — the set of all proper polynomials in the
PI-algebra Ri,j .

We continue with an important theorem which we will use throughout the paper.
The original statement is in the language of relatively free algebras but we translate
it in the language of the algebras Ri,j .

Theorem 8.4 (Drensky, 1999). For the PI-algebra Ri,j we have that

Ri,j ∼= K[x1, . . . , xn]⊗ Pn(Ri,j).

For more information on relatively free algebras and T -ideals see [5].

8.2. Representation theory of the general linear group. In this subsection
we consider basic results on the representation theory of the general linear group
GLn(K), acting on An. For the purposes of this paper we shall describe GLn’s
irreducible modules in terms of Schur functions and, thus, Young diagrams only.
For more information on the representation theory of finite and nonfinite groups see
[15]. The representation theory of GLn is connected with the representation theory
of the symmetric group Sn. The action of GLn, on the other hand, is connected
with the action of Wn. Therefore, it would be interesting to describe the results in
this paper in the language of representations of Sn and Wn too. For convenience,
however, here we shall concentrate on GLn-representations.

Consider π — a finite dimensional representation of the group GLn(K), i.e.

π : GLn(K) −→ GLr(K)

for a given r.

Definition 8.5. The representation π is polynomial if the entries (π(g))ij of the

corresponding r × r matrix π(g) are polynomials of the entries akl of g, given
g ∈ GLn. The polynomial representation π is called homogeneous of degree d if its
entries are of degree d.

Similarly, we say that the GLn(K)-modules are correspondingly polynomial mod-
ules and homogeneous polynomial modules. We want to see the action of GLn on
the free associative algebra An. More specifically, we can extend the action of
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GLn on the vectors space Vn, with generators x1, . . . , xn, diagonally on the free
associative algebra An by

g(xr1 · · ·xrm) = g(xr1) · · · g(xrm),

where g ∈ GLn, xr1 · · ·xrm ∈ An. This way, An becomes a left GLn-module which

is a direct sum of the submodules A
(r)
n , for r = 0, 1, 2, . . . of the grading of An.

Theorem 8.6. All polynomial representations of GLn are direct sums of irreducible
homogeneous polynomial subrepresentations. Moreover, all irreducible homogeneous
polynomial GLn-modules of degree d are isomorphic to a submodule of A(d).

The irreducible homogeneous polynomial GLn-representations are known.

Definition 8.7. We denote with sλ = sλ(Xd) the Schur function which is a quotent
of Vandermonde type determinants

sλ(Xd) =
V ′(λ+ δ,Xd)

V ′(δ,Xd)
,

where λ = (λ1, . . . , λd) is a partition, δ = (d− 1, . . . , 0) and

V ′(µ,Xd) =

∣∣∣∣∣∣∣∣∣
xµ1

1 xµ1

2 · · · xµ1

d

xµ2

1 xµ2

2 · · · xµ2

d
...

...
...

xµd

1 xµd

2 · · · xµd

d

∣∣∣∣∣∣∣∣∣ ,
where µ = (µ1, . . . , µd) and Xd is a set of variables.

The following theorem is fundamental to our representation theory considera-
tions in this paper. It can be found in [15] and [5].

Theorem 8.8. The pairwise nonisomorphic irreducible homogeneous polynomial
GLn-representations of degree d ≥ 0 are in 1-1 correspondence with partitions λ =
(λ1, . . . , λr) of d.

Definition 8.9. Let Yn(λ) be the irreducible GLn-module related to λ.

Due to the correspondence with partitions, we have that the dimension of Yn(λ)
for a fixed λ is equal to the number of semi-standard Young λ-tableaux of content
λ = (λ1, . . . , λr). For more information on Young diagrams and Young tableaux
see [14].

8.3. Additional results. Now we are ready to translate Theorem 6.5 (The Struc-
ture Theorem for the free metabelian associative algebra) in the language of repre-
sentation theory of GLn. The action of the general linear group on An translates
on Ri,j ⊂ An and thus on the quotients Nr(Ri,j).

Theorem 8.10. We have the following module structure

Nr(R2,2) ∼=

 ∞∑
j=0

Yn(j)

⊗ Yn(r − 1, 1),

where Yn(λ) is the irreducible GLn-module related to the partition λ.
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Proof. First of all, from Theorem 6.5 we have that a basis for Nr(R2,2) is

{xα1
1 · · ·xαn

n [xi1 , . . . , xir ]}

for a fixed r, where i1 > i2 ≤ · · · ≤ ir. This means that

Nr(R2,2) ∼= K[Xn]⊗ P (r)
n (R2,2),

where P
(r)
n (R2,2) is the vector space of proper elements in R2,2 of degree r (with

basis {[xi1 , . . . , xir ]} for i1 > i2 ≤ · · · ≤ ir). Now, since the Hilbert series of all
homogeneous polynomials of a fixed degree j is the complete symmetric function

H(t1, . . . , tn) =
∑

tα1
1 · · · tαn

n , where α1 + · · ·+ αn = j,

we have that this series is equal to the Schur function s(j)(t1, · · · , tn) which gives
us the isomorphism

K[Xn] ∼=
∞∑
j=0

Yn(j).

Consider the mapping

[xi1 , . . . , xir ] 7→ i2 i3 i4 · · · ir
i1

,

where i1 > i2 ≤ · · · ≤ ir. This mapping is a bijection between the elements of
degree r in Pn(R2,2) and the semi-standard Young tableaux. Thus the Hilbert

series of P
(r)
n (R2,2) is equal to s(r−1,1)(t1, . . . tn) and this consequently leads us to

the isomorphism

P (r)
n (R2,2) ∼= Yn(r − 1, 1).

The last argument completes the proof.

The GLn-structure, we presented, would give us the same dimensions we ob-
tained for the gradings of the N -elements in Corollary 6.6. However, the structure
is of the form of a tensor product of irreducible modules. It would be interesting
to present it of the form of a direct sum of Yn-modules. This is possible via the
Littlewood-Richardson rule ([15]). However, here the modules are simpler, so we
shall use the Young rule.

Theorem 8.11 (Young Rule). We have that

Yn(j)⊗ Yn(λ1, . . . , λn) ∼= Yn(λ1 + p1, . . . , λn + pn),

where the summation is over all pi, i = 0, 1, . . . , n, such that λi + pi ≤ λi−1 for
i = 0, 1, 2, . . . , n. Moreover,

Yn(1q)⊗ Yn(λ1, . . . , λn) ∼= Yn(λ1 + ε1, . . . , λn + εn),

where the summation is over all εi = 0, 1, such that ε1 + · · ·+ εn = q and λi + εi ≤
λi−1 + εi−1 for i = 0, 1, 2, . . . , n.

We note that (1q) stands for the partition (1, . . . , 1) of q with exactly q 1s. It is
sufficient to consider Yn(j)⊗ Yn(r − 1, 1). The Young rule gives us

Yn(j)⊗ Yn(r − 1, 1) ∼=
min{j,r−2}∑

k=0

Yn(r + j − k − 1, k + 1).
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Therefore, we obtain the structure

Nr(R2, 2) ∼=
∞∑
j=0

min{j,r−2}∑
k=0

Yn(r + j − k − 1, k + 1).

· · · ⊗ · · · = · · · · · ·
· · ·

Table 3. Diagrammatic version of the product of two irreducible
modules via the Young rule.

We can also calculate the dimensions of these modules using the Weyl character
formula (see [15]).

Theorem 8.12 (Weyl character formula). We have that the representation Yn(λ)
is zero if and only if n < p for p — number of parts in the partition λ. If n ≥ p we
have

dimYn(λ) =
∏

1≤i<j≤n

λi − λj + j − i
j − i

.

For instance, for the lowest degree part (r − 1, 1) we have the dimension

(r − 1 + 1− 1)/1 = r − 1.

This is compatible with our MAGMA calculations.
So far in this paper we presented a method for obtaining the structure of the

N -series of the free metabelian associative PI-algebra R2,2. In the following lines
we will try to generalize this method for two variables x1, x2. First we extend some
of the previous results.

Theorem 8.13. For the ideals Mj(A2) and M2(A2) we have that

Mj(A2) ·M2(A2) ∈Mj+1(A2)

for any j greater than one.

Proof. First of all, note that M2(A2) is generated by [x1, x2] as a two-sided ideal.
Hence, Mj(A2) ·M2(A2) as a two-sided ideal is generated by all elements of the
form

{[C, x̄]r[x1, x2]},
where C is a commutator of length j − 1 (meaning that l(C) = j − 1), r is a
monomial in A2, and x̄ ∈ {x1, x2}. Without loss of generality, we consider only the
case x̄ = x1. Thus we are interested in

[C, x1]r[x1, x2].

Having in mind that

−[x1, C]r[x1, x2] = C[x1, r][x1, x2]− [x1, Cr][x1, x2],

[x1, r][x1, x2] ∈ M3(A2) (from Proposition 5.4), C ∈ Mj−1(A2) and Mj−1(A2) ·
M3(A2) ∈Mj+1(A2) (since 3 is odd) we get that C[x1, r][x1, x2] is in Mj+1(A2), as
intended.
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Due to the above considerations, we need to consider only [Cr, x1][x1, x2], but
here we may apply identity

[a, b][b, c] = 3[ab, b, c]− 3[a, b, c]b+ [ac, b, b]− a[c, b, b]− [a, b, b]c

to obtain

3[Crx1, x1, x2]− 3[Cr, x1, x2]x1 + [Crx2, x1, x1]− Cr[x2, x1, x1]− [Cr, x1, x1]x2.

Moreover, take the elements 3[Cr, x1, x2]x1, [Crx2, x1, x1], and [Cr, x1, x1]x2. The
commutators Cr and Crx2 both belong Mj−1(A2). Since x1 is in L1(A2), from
Theorem 5.6 we get that [Cr, x1], [Crx2, x1] and [Cr, x1] are in Lj(A2). This
automatically means that 3[Cr, x1, x2]x1, [Crx2, x1, x1], and [Cr, x1, x1]x2) are in
Mj+1. Now, we consider only Cr[x2, x1, x1] ∈Mj−1(A2) ·M3(A2) ∈Mj+1(A2).

The proof is completed.

We additionally modify Lemma 6.3.

Lemma 8.14. Every element m of the form

m = b[[xi1 , . . . , xir ], c],

can be presented as a linear combination of elements

b′[xj1 , . . . , xjr+v ],

where v is greater than zero.

Proof. Due to the bilinearity of the Lie bracket and the distributive property of
the polynomials, without loss of generality, we set b and c to be monomials. Now,
suppose c = xa1i1 · · ·x

am
im

. We prove the statement via induction on the total degree
a1 + · · ·+ am.

For deg c = 1 we have that c = xj is a variable in the set of n variables which gen-
erate the free associative algebra. Therefore, we have that m = b[xi1 , . . . , xir , xj ].
The base of the induction is proven.

Suppose that we have proven the statement for all monomials c′ with deg c′ ≤ i
and i ≥ 1. Consider the monomial c = xa1j1 · · ·x

ah
jh

with deg c = i+ 1. We have that

m = b[[xi1 , . . . , xir ], xa1j1 · · ·x
ah
jh

]

= b · xa1j1 · · ·x
ah−1
jh

[[xi1 , . . . , xir ], xjh ] + b[[xi1 , . . . , xir ], xa1j1 · · ·x
ah−1

jh
]xjh .

With proper permutations of the elements in the commutator we can present the
first element in the sum of the desired form. Hence,

l(b · xa1j1 · · ·x
ah−1
jh

[[xi1 , . . . , xir ], xjh ]) = l(m).

Now, for the second summand we have

b[[xi1 , . . . , xir ], xa1j1 · · ·x
ah−1

jh
]xjh = b · xjh [[xi1 , . . . , xir ], xa1j1 · · ·x

ah−1

jh
]

+ b[[xi1 , . . . , xir ], xa1j1 · · ·x
ah−1

jh
, xjh ].

For the first element in the sum we use the induction hypothesis because

deg xa1j1 · · ·x
ah−1

jh
= i.

For the second summand we permute the last two elements in the commutator and
use the induction hypothesis again. Thus, we prove the statement for deg c = i+ 1
as well, which completes our induction and proof respectively.
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We continue with the modification of Lemma 6.4. Note that we work in two
variables.

Lemma 8.15. When working in two variables, for the ideal Mr(R2,3) we have that

Mr(R2,3) ∼= K[x1, x2]⊗ span{[xi1 , . . . , xij ], [xk1 , . . . , xkj′ ][x1, x2]},

where i1, . . . , ij are either 1 or 2, j ≥ r, k1, . . . , kj are either 1 or 2, and j′ ≥ r−1.

Proof. First, note that

ab[c, d, e]− ba[c, d, e] = [a, b][c, d, e] = 0.

This means that our ideal is a left K[x1, x2]-module.
We proceed by induction on r. Since M1(R2,3) = R2,3, for r = 1 the statement

is satisfied. Furthermore, M2(R2,3) = span{a[x1, x2]b} which also satisfies the
conditions. Now, as a two sided ideal, M3(R2,3) is generated by (see [5])

[xi1 , xi2 , xi3 ], [xi1 , xi2 ][xi3 , xi4 ] + [xi2 , xi3 ][xi1 , xi4 ],

which again correspond to the statement.
Now, suppose we have proven things for all 3 ≤ j ≤ i and consider r = i + 1.

We take m ∈ Mi+1(R2,3). Without loss of generality, m = a[C, b] where a and b
are monomials in A2 and C ∈ Li(A2) ⊂Mi(A2). Thus C ∈Mi(A2) and we use the
induction hypothesis to present m as a sum of two independent sums

m′ = a′
[∑

b′[xi1 , . . . , xij ], c′
]
,

and

m′′ = a′′
[∑

b′′[xk1 , . . . , xki−1 ][x1, x2], c′′
]
,

where j ≥ i, all of the indices are either 1 or 2, a′, a′′ ∈ K[x1, x2], and b′, b′′, c′, c′′ ∈
A2 are monomials.

Due to the bilinearity, for m′ we consider only

m′ = a′
[
b′[xi1 , . . . , xij ], c′

]
= a′b′[xi1 , . . . , xij , c

′] + a′[b′, c′][xi1 , . . . , xij ].

For the first summand we use Lemma 8.14. The second element in the sum is zero,
because l([xi1 , . . . , xij ]) ≥ 3.

Due to the bilinearity, for m′′ we consider only

m′′ = a′′
[
b′′[xk1 , . . . , xki−1

][x1, x2], c′′
]

= a′′b′′
[
[xk1 , . . . , xki−1

][x1, x2], c′′
]

+ a′′ [b′′, c′′] [xk1 , . . . , xki−1
][x1, x2]

= a′′b′′
[
xk1 , . . . , xki−1

]
[x1, x2, c

′′] + a′′b′′
[
xk1 , . . . , xki−1

, c′′
]

[x1, x2].

We see that a′′b′′[xk1 , . . . , xki−1
][x1, x2, c

′′] = 0 since the first commutator is
longer than 2. The second summand satisfies the statement by Lemma 8.14 for the
first commutator. Now we use the left K[x1, x2]-action to complete the induction
and thus the proof.

We would like to find the GLn-module structure of the algebra R2,3. Theorem
8.4 gives us that

R2,3 = K[x1, . . . , xn]⊗ Pn(R2,3).

Thus, it is sufficient to consider the vector space of proper polynomials Pn(R2,3).
Before we calculate that, note that it is easy to see that Pn(A/M2(A)) = K since
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A/M2(A) is the abelianization of An. The algebra A/M3(A) is the so called Grass-
man algebra and from [5] we have that

Pn(A/M3(A)) ∼=
∞∑
k=0

Yn
(
12k
)
.

We know that M2(A) ·M3(A) is a product of two T -ideals. Formanek [8] presented
the Hilbert series of quotients of the form A/(U · V ) in terms of the Hilbert series
of the quotient A/U and A/V , where U and V are two T -ideals. Here we translate
this result in the language of GLn-representations.

Theorem 8.16 (Formanek, 1985). For Pn(A/(T · V )), the space of proper polyno-
mials in A/(T · V ), we have

Pn(A/(U ·V )) ∼= Pn(A/U)⊕Pn(A/V )⊕(Yn(1)−1)⊗Pn(A/U)⊗Pn(A/V )⊗K[x1, x2],

where U and V are T -ideals.

Based on Lemmma 8.15 and Theorem 8.16 we state the following conjecture

Conjecture 8.17. For the algebra R2,3(A2) we have that

Nr(R2,3(A2)) ∼=

( ∞∑
i=0

Y2(i)

)
⊗ (Y2(r − 1, 1)⊕ Y2(r − 2, 2)) ,

for r greater than four.

The final step of the proof would be to modify the Structure Theorem for the case
R2,3 and “adjust” the indices of the irreducible modules. Our MAGMA calculations
also agree with the conjecture.

9. Conclusion

We studied the lower central series of algebras with polynomial identities. Using
approaches from PI theory, linear algebra, and representation theory, we considered
some general properties for the algebras Ri,j . We gave a comprehensive classifica-
tion of the structure of the N -series for the free metabelian associative algebra R2,2.
Furthermore, we formulated a conjecture about the general behavior of the lower
central series of a class of PI-Algebras. Studying the representation theory of GLn,
Sn, and Wn we may generalize the method, which we present in this paper, for
more PI-algebras of the form Ri,j .
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Appendix A. Basic definitions

Definition A.1. An algebra (or K-algebra) is a vector space A over a field K,
equipped with a binary operation ∗ : (A,A) → A, which we call multiplication,
such that for every a, b, c ∈ A and α ∈ K we have:

(a+ b) ∗ c = a ∗ c+ b ∗ c,
a ∗ (b+ c) = a ∗ b+ a ∗ c,

α(a ∗ b) = (αa) ∗ b = a ∗ (αb).

Definition A.2. A k-algebra g with multiplication [, ] : (g, g)→ g is a Lie algebra
if the following holds:

[a, a] = 0 (the anticommutative law),

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 (Jacobi identity).

We also recursively define [r1, . . . , rn] = [[r1, . . . , rn−1], rn] for elements in g.
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Definition A.3. A vector space A is graded, if it is a direct sum of the following
type

A =
⊕
i≥0

A(i),

where the subspaces A(i) are homogeneous components of degree i of A.

In a similar way we consider multigrading of A =
⊕

iV
(i1,...,in), where we have

homogeneous components of a multiindex degree. An algebra A with the property
A(i) ·A(j) ⊂ A(i+j) is a graded algebra.

Definition A.4. For two vector spaces V and W with corresponding bases
{vi | i ∈ I} and {wj | j ∈ J} we define their tensor product V ⊗W to be the vector
space with basis

{vi ⊗ wj | i ∈ I, j ∈ J}.

The multiplication of linear combinations is defined as(∑
i∈I

αivi

)
⊗

∑
j∈J

αjwj

 =
∑
i∈I

∑
j∈J

αiβj(vi ⊗ wj),

where αi, βj ∈ K.

Definition A.5. For dimAi < ∞, where i ∈ N0, we denote with the Hilbert-
Poincaré series of the algebra A the formal power series

H(A, z) = Hilb(A, z) =
∑
i≥0

dimA(i)zi.

For multigrading we take formal power series in more variables. Thus

H(A, z1, . . . , zn) = Hilb(A, z1, . . . , zn) =
∑
i

dimA(i1,...,in)zi11 · · · zinn .
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Appendix B. Collected data via MAGMA

Element in the series: Degrees of grading:

Bi[d] 0 1 2 3 4 5 6 7 8 9

B2[d] 0 0 1 2 3 4 5 6 7 8
B3[d] 0 0 0 2 4 6 8 10 12 14
B4[d] 0 0 0 0 3 6 9 12 15 18
B5[d] 0 0 0 0 0 4 8 12 16 20
B6[d] 0 0 0 0 0 0 5 10 15 20
B7[d] 0 0 0 0 0 0 0 6 12 18
B8[d] 0 0 0 0 0 0 0 0 7 14
B9[d] 0 0 0 0 0 0 0 0 0 8

Table 4. Calculations for A2/(M2(A2) ·M2(A2)).

Element in the series: Degrees of grading:

Ni[d] 0 1 2 3 4 5 6

N2[d] 0 0 3 9 18 30 45
N3[d] 0 0 0 8 24 48 80
N4[d] 0 0 0 0 15 45 90
N5[d] 0 0 0 0 0 24 72
N6[d] 0 0 0 0 0 0 35

Table 5. Calculations for A3/(M2(A3) ·M2(A3)).

B.1. Data for the algebra A/(M2(A) ·M2(A)). Let us consider the elements Bi
for two variables (Table 4). In each row we observe arithmetic progressions with
starting element Bi[i] = i − 1 and common difference i − 1. For instance, the
sequence (4, 8, 12, 16, 20, . . . ) follows this pattern.

The elements Ni for three variables (Table 5) exhibit the following structure. In
each row we observe a sequence with a starting element Bi[i] = i2 − 1. The differ-
ences between consecutive elements form an arithmetic progression with starting
element 2(i2−1) and difference i2−1. For example, for i = 3 consider the sequence
(8, 24, 48, 80, . . . ). The differences form (16, 24, 32, . . . ), which is compatible with
our conjecture.
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Element in the series: Degrees of grading:

Bi[d] 0 1 2 3 4 5 6 7 8 9

B2[d] 0 0 1 2 3 4 5 6 7 8
B3[d] 0 0 0 2 4 6 8 10 12 14
B4[d] 0 0 0 0 3 6 9 12 15 18
B5[d] 0 0 0 0 0 6 12 18 24 30
B6[d] 0 0 0 0 0 0 8 16 24 32
B7[d] 0 0 0 0 0 0 0 10 20 30
B8[d] 0 0 0 0 0 0 0 0 12 24
B9[d] 0 0 0 0 0 0 0 0 0 14

Table 6. Calculations for A2/(M2(A2) ·M3(A2)).

Element in the series: Degrees of grading:

Ni[d] 0 1 2 3 4 5 6

N2[d] 0 0 3 9 18 30 45
N3[d] 0 0 0 8 30 66 116
N4[d] 0 0 0 0 18 54 108
N5[d] 0 0 0 0 0 48 144

Table 7. Calculations for A3/(M2(A3) ·M3(A3)).

B.2. Data for the algebra A/(M2(A) ·M3(A)). As one can see, the information
presented in Table 6 gives us arithmetic progressions with starting elements Bi[i]
and difference Bi[i]. The sequence of the first nonzero elements

(1, 2, 3, 6, 8, 10, 12, 14, . . . )

stabilizes after the element 3 and behaves like an arithemtic progression with com-
mon difference two.

We consider the elements Ni(A/(M2(A) ·M3(A)) (Table 7). For a sequence in a
row, the differences between consecutive elements form an arithmetic progression.
For example, consider the sequence with nonzero elements for N3

(18, 54, 108, 180, . . . ).

The differences form (36, 54, 72, . . . ) which is an arithmetic progression with starting
element 36 and common difference 18.
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Element in the series: Degrees of grading:

Ni[d] 0 1 2 3 4 5 6 7 8 9

N2[d] 0 0 1 2 3 4 5 6 7 8
N3[d] 0 0 0 2 5 8 11 14 17 20
N4[d] 0 0 0 0 3 6 9 12 15 18
N5[d] 0 0 0 0 0 4 8 12 16 20
N6[d] 0 0 0 0 0 0 5 10 15 20
N7[d] 0 0 0 0 0 0 0 6 12 18
N8[d] 0 0 0 0 0 0 0 0 7 14
N9[d] 0 0 0 0 0 0 0 0 0 8

Table 8. Calculations for A2/(A2[L2(A2), L2(A2)]).

Element in the series: Degrees of grading:

Bi[d] 0 1 2 3 4 5 6

B2[d] 0 0 3 8 15 24 35
B3[d] 0 0 0 8 24 48 80
B4[d] 0 0 0 0 15 45 90
B5[d] 0 0 0 0 0 24 72
B6[d] 0 0 0 0 0 0 35

Table 9. Calculations for A3/(A3[L2(A3), L2(A3)]).

B.3. Data for the algebra A/(A[L2(A), L2(A)]). In this case the table for

Ni(A/(A[L2(A), L2(A)]))

(Table 8) copies the information in Table 4, except for the row for N3. The re-
spective sequence is an arithmetic progression with starting element 2 and common
difference 3.

The elements Bi(A/(A[L2(A), L2(A)])) follow the same pattern as in Table 5.
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