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Abstract

We obtain an upper bound for the maximum number of integral lattice points on the

graph of a twice differentiable convex function f : [0, N ] → [0, Nγ], where γ > 0 by gen-

eralizing an argument for γ = 1 to all γ between 1
2

and 2. This method was based on

the asymptotes of sums involving the Euler totient function, which we extended to prove

the general case. Moreover, we also strengthen upper bounds for smooth convex functions

f : [0, N ] → [0, N ] with restrictions on higher derivatives. Specifically, we tighten an up-

per bound on the number of lattice points on a curve with positive first, second, and third

derivatives by modifying a method of Bombieri and Pila. We also examine the problem of

finding the maximal number of lattice points on a smooth convex curve y = f(x), subject

to the condition 1 < f ′′(x) < 2. We conjecture that this maximum is attained for the curve

y = 3
4
x2, which has 2

√
N
3
− O(1) lattice points. Finding the number of lattice points on

curves has a large number of applications, including prime factorization, which is used in

modern cryptography to create secure one-way systems for which it is difficult to decode

messages without the proper key. Another application is the approximation of the area un-

der a curve. Though this problem may be solved with numerical integration, approximating

the area uses less computing power to produce reasonably accurate measures while saving

time.



Summary

Modern cryptography often incorporates mathematical techniques that blend disparate

fields of mathematics (like elliptic curves and prime factorization) with computer science as

people try to improve their cryptographical systems’ security against hackers who in turn try

to develop more powerful algorithms to crack them. Specifically, the techniques involving

prime factorization are useful because multiplying prime numbers takes much less time than

factoring the product of two large primes. They can be thought of as finding lattice points, or

points with integer coordinates, on a rectangular hyperbola. Quickly counting lattice points

can thus hold great importance to cryptography.

A function’s derivative represents the instantaneous rate of change of that function. A

function is strictly convex if it has a non-vanishing (non-zero) second derivative in a certain

range, and it is differentiable if its derivatives up to a certain order are continuous. The

area bounded by a given differentiable, strictly convex curve in a plane can be estimated by

counting lattice points inside the curve. These approximations, however, are often rendered

imprecise as a result of the presence of lattice points on the curve. We can improve the

estimates by finding tighter upper bounds on the number of lattice points on the curve.

We examined the maximum number of lattice points a function’s graph can contain on a

grid of large integer dimensions under different restrictions on the derivatives. For instance,

we can require non-zero third derivatives or second derivatives within a certain range. We

observed the maximum number of lattice points on convex functions mapping a large interval

to another large interval of the same length under certain conditions on the derivatives. We

also investigated the general case of a convex function mapping a large interval to another

large interval of a different length. In fact, the general case is analogous to the specific one

when the larger interval’s size is shorter than the square of the smaller interval’s size.



The results of this paper reduce the time complexity of calculating the lattice points on a

curve under certain conditions. Since factorization is very slow compared to multiplication,

the findings may be able to help reduce the time needed to crack a factorization-based

cryptographical system.



1 Introduction

We find the number of lattice points, or points with integer coordinates, on a twice differ-

entiable convex function f : [0, N ]→ [0, Nγ] for some γ > 0. This problem is motivated by

measurements of area under convex curves. Huxley [1] mentions many such approximations

involving counting points under a curve. For example, one measure divides the xy-plane into

a grid of squares of side length 1
M

. The area is then approximately equal to the combined

area of the squares with their bottom-left corners inside the curve. Alternatively, one can

count the number of squares with their centers inside the curve. These approximations are

hindered by the presence of lattice points on the curves. If we can obtain a stronger upper

bound for the number of lattice points on the curve, we can get more accurate approximations

to the area contained by the curve.

To find the upper bound, we use techniques from number theory and calculus. For any

points P = (xP , yP ) and Q = (xQ, yQ) in Z2, the discrete slope β is defined as

β =
yQ − yP
xQ − xP

.

We study the number of discrete slopes between consecutive lattice points on the graphs—

that is, points P and Q such that there is no lattice point on the curve between P and Q—

within a bounding box, primarily because the slopes themselves are monotonically increasing

as a result of the convex function’s positive second derivative. Maximizing the number of

discrete slopes also maximizes the number of lattice points because in general the number

of lattice points is one greater than the number of discrete slopes.

Some notation must be defined to find the solution to this problem. For a positive integer

L, Euler’s totient function φ(L) is defined as the number of positive integers less than or

equal to L that are coprime with L. Also, we denote the greatest common factor of two

positive integers a and b as (a, b).
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Smooth functions are functions that have continuous derivatives to the second order.

Examples include exponential and polynomial functions. Consider a smooth function y(x)

and a sufficiently large integer N . The box bounded by the x and y axes and the lines

x = N and y = N contains (N + 1)2 lattice points. We find how many of these lattice

points the smooth function can pass through given that the function’s second derivative is

not equal to zero for any x such that 0 ≤ x ≤ N . Without loss of generality, we can consider

only the case where the second derivative is positive because, if the second derivative is

continuous, it is either always positive, always negative, or somewhere zero. Functions with

a purely negative second derivative can be negated to obtain a function with a positive

second derivative (shifting upward N spaces to ensure that the same area of the function is

within the bounding box).

Huxley [2] and others have found bounds on the number of lattice points on a curve

of the form O
(
NK(logN)Λ

)
under various conditions of differentiability. For example, van

der Corput [3] proved that the number of lattice points was bounded above by O
(
N

2
3

)
for a twice differentiable curve, and Huxley [4] found that a three times differentiable curve

has a number of lattice points bounded above by O
(
N

7
11 (logN)

47
22

)
. They used methods

involving approximating curves with polygons and with transformations of other curves

known as resonance curves.

In section 3, we investigate a possible maximal case for the number of lattice points on the

graph of a function with second derivative strictly between 1 and 2. In section 4, we prove an

upper bound to the number of lattice points on the graph of a function f : [0, N ]→ [0, Nγ].

In section 5, we improve an upper bound on the number of lattice points on the graph of a

function with strictly positive first, second, and third derivatives.
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Figure 1: The graph of y = x2 for N = 25. There are six lattice points, which is one more
than

√
25. As N grows, this difference becomes negligible.

2 Preliminary upper bounds

In this paper, we focus on the cases where the second derivative is nonvanishing, but the

upper bound for the general case of a smooth function is N + 1 points and is achieved

by the function y = x. In the case of y = x, the curve contains the lattice points

(0, 0), (1, 1), (2, 2), ..., (N,N).

The number N + 1 is an upper bound for all functions. Were there more lattice points

on the curve, it would no longer be a function because—by necessity—there would have to

be at least two points with the same x-value. But we must also consider that the function,

by the conditions of the problem, cannot have a second derivative equal to zero for any x

from 0 to N . The aforementioned y = x has a second derivative equal to zero. Another

function that passes through N + 1 lattice points is y = sin (πx) + 1. However, it also has

several points with zero second derivative. Both of these functions, therefore, violate the

second condition. The function y = x2 does not violate the conditions. It has
⌊√

N
⌋

+ 1

lattice points, as shown in Figure 1.
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3 The N ×N case

Jarńık [5] proved the number of lattice points on a smooth convex curve is bounded above

by 2
2
3N

2
3 . His proof is summarized below.

Let R be some value such that more than half the changes in y between consecutive

points are greater than R, and let S be the number of lattice points on the curve. Then

N ≥
bS2 c∑
i=1

yi+1 − yi ≥
RS

2
.

To maximize R, we set R = 2N
S

. Then, half the differences should be smaller than 2N
S

in

both the x and y directions. Therefore,

S ≤
(

2N

S

)2

,

and isolating S we obtain

S ≤ 3

√
(2N)2 = 2

2
3N

2
3 .

The proof of the strict upper bound is known [5] and summarized below. For two con-

secutive lattice points, p and q respectively are the differences in the x and y coordinates.

We calculate the strict upper bound by finding the number of discrete slopes p
q

possible such

that p, q ∈ Z and p, q ≤ x for some positive integer x. Next, we compare it to N , which is

the sum of the values of p and equivalently of the values of q.

First, to each pair of integers p and q, henceforth denoted 〈p, q〉, we associate the slope

q
p
. There are some repeated slopes, so to minimize the size of the differences we choose only

p and q such that (p, q) = 1. If (p, q) = r, then we obtain the slope q
p
, which we can also

obtain for the pair 〈p
r
, q
r
〉. Let us set q equal to an integer L > 2 and consider all values of

p less than q with (p, q) = 1. Then the number of pairs of p and q for q = L is φ(L). An
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example for L = 12 is shown in Table 1.

p q q
p

1 12 12

5 12 12
5

7 12 12
7

11 12 12
11

Table 1: The values of p and q and corresponding slopes for L = 12. Note that we must also
consider each slope’s reciprocal.

Lemma 1. Let N be a sufficiently large integer and f : [0, N ]→ [0, N ] be a smooth function

such that f ′′ > 0 and for which the number of lattice points on its graph is maximized. Then

the differences between the coordinates of consecutive lattice points in the x and y directions

do not exceed 3

√
Nπ2

3
. [5]

Proof. We note that, to maximize the number of differences between coordinates on the

graph, the sum of the differences should be maximized. This is achieved if the sum equals

N . We calculate the sum of the p values in two parts for each L. We can group the positive

integers from 1 to L−1 in pairs that add to L. Since only φ(L) of these integers are coprime

with L, there are φ(L)
2

such pairs, so these integers add to Lφ(L)
2

. We are also considering

the reciprocals of these slopes; therefore, we must also calculate the sum of the values of q.

Because these values all equal L and there are φ(L) of them, they add up to Lφ(L). Adding

the two results yields 3Lφ(L)
2

.

For example, in the case of L = 2, we obtain only 〈1, 2〉, and the sum is 3, in agreement

with the above.

We take the sum of these values for all L ≥ 2 and add 1 because the pair 〈1, 1〉 yields a

single slope of 1.

We thus have
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N ≤
x∑
k=2

3kφ(k)

2
+ 1,

From [6], we see that the latter sum is asymptotically equivalent to 3
π2x

3.

Note that we do not arrive at integer values of x for every N . We arrive at an x between

two consecutive integers T and T + 1, so we need to subtract a number of differences less

than 3Tφ(T )
2

= O(T 2), which is negligible compared to 3
π2x

3 for sufficiently large x.

Isolating x in terms of N , we obtain

x ≤ 3

√
Nπ2

3
.

Theorem 1. Let N be a large integer and f : [0, N ]→ [0, N ] be a smooth function such that

f ′′ > 0. The number of lattice points on the graph of f is bounded above by 2 3

√
3
π2N

2
3 . [5]

Proof. Since there are φ(L) pairs, there must be 2φ(L) slopes because each pair yields two

slopes. As above, the pair 〈1, 1〉 yields a single slope of 1, so we now have a formula for the

number of slopes

S = 2
x∑
i=2

φ(i) + 1

which, for large x, grows as 3
π2x

2 [7].

From these formulae we can find a bound for S in terms of N :

S ≤ 2
3

√
3

π2
N

2
3 .
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We can impose further restrictions on the second derivative. For example, it is possible

to restrict it to a certain range, like 1 < f ′′(x) < 2.

We will consider curves with a constant non-zero second derivative, i.e., parabolas. The

number of lattice points that a parabola of the form y = a
bc2
x2 contains, for sufficiently large

N and a, b, c ∈ Z, (a, bc2) = 1, can be derived as follows:

Take y = N , then N = a
bc2
x2. Isolating x, we obtain x = b

√
cN
a

. However, only lattice

points with x-coordinates that are multiples of bc can be on the curve. Otherwise, the

y-coordinate is not an integer.

Dividing x by bc yields

x

bc
=
b
√

cN
a

bc
=

√
N

ac
.

For N sufficiently large, we can use the symmetry of the parabola to shift it right enough

spaces such that at most twice as many points fit on the curve.

Therefore, we have

2

√
N

ac

lattice points, with an error term in O(1).

So the maximum number of lattice points possible with a constant second derivative

under the given restrictions is 2
√

N
3

. This can be achieved with y = 3
4
x2.

4 The N ×Nγ case

The general case of lattice points on a function f : [0, N ] → [0, Nγ] for some γ > 0 can be

further separated into different cases. First, we can consider the case of γ ≥ 2. For this case,
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we can choose the function f(x) = x2 and obtain exactly N + 1 lattice points—the absolute

maximum because that is the largest number of x-coordinates.

We also consider the case where γ ≤ 1
2
. In this case, the upper limit on the number of

lattice points is 2Nγ. If there were any more lattice points on the curve, by the pigeonhole

principle, there would have to be three with the same y coordinate and therefore on the

same line. Since a strictly convex curve cannot have three collinear points, the curve can

only have 2Nγ lattice points.

The case where 1
2
< γ < 2 can be solved in much the same way as the specific case of

γ = 1.

Let a and b be positive integers for which p ≤ a and q ≤ b for every difference in

consecutive lattice points’ coordinates p and q. First, we calculate the number of slopes that

are possible.

Lemma 2. Let a and b be two positive integers such that the differences between the coordi-

nates of consecutive lattice points in the xy-plane are positive and do not exceed a in the x

direction or b in the y direction, and the discrete slopes are monotonically increasing. Then

there are at most 6ab
π2 lattice points.

Proof. The number of slopes S is

S =
∑

1≤p≤a

∑
1≤q≤b
(p,q)=1

1.

The number of positive integers less than or equal to A that are relatively prime with B

grows as Aφ(B)
B

, so we arrive at the following sum

S =
∑

1≤p≤a

bφ(p)

p
∼ b

∑
1≤p≤a

φ(p)

p
.

As in [7], the sum
∑x

k=1
φ(k)
k

grows as 6x
π2 .
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Therefore, S ∼ 6ab
π2 .

Theorem 2. Let N be a sufficiently large integer, suppose that 1
2
< γ < 2, and let f :

[0, N ]→ [0, Nγ] be a smooth function such that f ′′ > 0. The number of lattice points on the

graph of f is bounded above by 2 3

√
3
π2N

γ+1
3 .

Proof. To calculate ab with respect to N and γ we must add up all values of p that are

possible (that is, such that p and q are coprime and p ≤ a and q ≤ b). Therefore, we have

the sums

N =
∑

1≤p≤a

∑
1≤q≤b
(p,q)=1

p =
∑

1≤p≤a

p
∑

1≤q≤b
(p,q)=1

1, (1)

Nγ =
∑

1≤q≤b

∑
1≤p≤a
(p,q)=1

q =
∑

1≤q≤b

q
∑

1≤p≤a
(p,q)=1

1. (2)

We consider (1), the first sum. (The second sum is calculated in an analogous manner.)

Using the asymptotic estimate
∑x

k=1
φ(k)
k
∼ 6x

π2 , we find that

N =
∑

1≤p≤a

bφ(p) = b
∑

1≤p≤a

φ(p) ∼ 3a2b

π2
.

The second sum, (2), is similarly

Nγ ∼ 3ab2

π2
.

To solve for ab, we multiply the sums together to yield

Nγ+1 ∼ 9a3b3

π4
.

Isolating ab, we obtain
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ab ∼ 3

√
π4

9
N

γ+1
3 .

Substituting this into the formula for S = 6ab
π2 that we obtained earlier, we arrive at

S ∼
6 3

√
π4

9
N

γ+1
3

π2
= 2

3

√
3

π2
N

γ+1
3 .

5 Restricted third derivative

A three times differentiable convex function with f (3) > 0 should have Nβ lattice points,

where 1
2
≤ β ≤ 3

5
[8]. It is conjectured that β = 1

2
, and considering y = N −

√
N − x shows

that β = 1
2

is best possible [9].

The following proof is structured similarly to that given in [10].

Let f(x) ∈ C3 ([0, N ]) , 0 ≤ x ≤ N . We are interested in the integral lattice points on the

graph of f(x). Let P1, . . . , PS be these points, arranged in order of increasing x-coordinates.

Let d ≥ 1 be an integer. Define a finite sequence of integers n` inductively by the

following:

• n0 = 1

• if n`−1 has been defined, and if there is an integer z such that the points Pi for n`−1 ≤

i < z lie on some algebraic curve of degree at most d but the points Pi for n`−1 ≤ i ≤ z

do not, then define n` = z. Otherwise, the sequence terminates with n`−1.

Suppose that the sequence n` has m + 1 elements. Let D = 1
2
(d + 1)(d + 2). Then

any D − 1 points in the plane lie on some algebraic curve of degree at most d. Therefore,

n` − n`−1 ≥ D − 1.

Let Jd denote the set of ordered pairs j = (j1, j2) such that j1, j2 ∈ Z and 0 ≤ j1 +j2 ≤ d.

We have |Jd| = D.
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If P is a point with coordinates (x, y), we write P j = P (j1,j2) := xj1yj2 .

Lemma 3. Suppose f ∈ CD−1 ([0, N ]) and d ≥ 1. Let xi be the x-coordinate of point Pi.

The sequence n` defined as above satisfies

∣∣xn`+1
− xn`

∣∣ ≥ ||f ||− 4
3(d+3)

D−1 D−
8(d−3)
3d(d+3)D!−

8
d(d+1)(d+2)(d+3)N1− 8

3(d+3) .

Proof. Bombieri and Pila proved in [10] that the matrix
(
P j
i

)
n`≤i≤n`+1

j∈Jd
has rank at most D.

Hence, there is a subset I ∈ {n`, . . . , n`+1} of cardinality D such that ∆ := det
(
P j
i

)
i∈I
j∈Jd

is

non-zero.

Since ∆ is clearly an integer, we can conclude that |∆| ≥ 1. We can use another formula,

also given in [10], that

|det (fj(xi))| ≤ |V (x1, . . . , xn)|n!N−
n(n−3)

2 ||f1||n−1 . . . ||fn||n−1

with n = D, the previously defined xi for i ∈ I, V (x1, . . . , xn) being the Vandermonde

determinant of x1, . . . , xn, and fi the functions xj1f(x)j2 for (j1, j2) ∈ Jd in some order.

We obtain

|V (xi; i ∈ I)| ≤
∣∣xn`+1

− xn`
∣∣D(D+1)

2

and (1) gives us:

|∆| ≤
∣∣xn`+1

− xn`
∣∣D(D−1)

2 N−
D(D−3)

2 D!
∏
j∈Jd

(DN)j1+j2−1||f ||j2D−1.

Bombieri and Pila use a weaker inequality that replaces D! with DD to obtain a weaker

upper bound. Instead, we allow the D! to remain in the equation, and we obtain stronger

results:
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|∆| ≤

(∣∣xn`+1
− xn`

∣∣
N

)D(D−1)
2

D
D(d−3)

3 D!N
dD
3 ||f ||

dD
6
D−1.

However, since |∆| ≥ 1, we have

∣∣xn`+1
− xn`

∣∣ ≥ ||f ||− 4
3(d+3)

D−1 D−
8(d−3)
3d(d+3)D!−

8
d(d+1)(d+2)(d+3)N1− 8

3(d+3) .

Since D
8(d−3)
3d(d+3)D!

8
d(d+1)(d+2)(d+3) < 2.03 for every d, we now obtain:

Main Lemma. Suppose d ≥ 1 and f ∈ CD−1([0, N ]), with D defined as above. Then the

integral lattice points on the graph of f(x), x ∈ [0, N ] lie on the union of not more than

2.03
(
||f ||

1
2
D−1N

) 8
3(d+3)

+ 1

real algebraic curves of degree at most d.

Remark. The bound in the general case of J being the set of ordered pairs j = (j1, j2)

such that xj1yj2 ∈ M for M a set of monomials of cardinality D, p :=
∑

j∈J j1 + j2, and

q :=
∑

j∈J j2 should be

(
Dp−DD!||f ||qD−1

) 2
D(D−1) N

2p
D(D−1) + 1.

The factor
(
D!
DD

) 2
D(D−1) approaches 1 as d increases, so the difference is most pronounced

for sufficiently small values of d.

6 Discussion

The analysis of lattice points on a curve has several applications to other fields. For example,

some cryptographical methods involve multiplying two large prime numbers, p and q, to
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obtain a large semiprime, n = pq [11]. This pair is equivalent to the point (p, q) on the

curve y = n
x
. Finding lattice points on hyperbolae of the form y = l

x
for positive integer l is

equivalent to finding factors of l. An efficient way to find lattice points on such a curve would

make it easier to factor a semiprime number. De Loera [11] mentions a method originally

proven by Jacobi that states that dividing the number of lattice points within a 4-ball of

radius r by 8 is equivalent to finding the sum of the factors of r that are not divisible by 4.

The reason this process is important to cryptography is that multiplying two numbers

takes comparatively little time, but factoring a large integer can take a lot longer, particularly

if it is the product of only two large prime numbers. No known efficient algorithm has yet

been found to factor a large semiprime. Therefore, in public-key cryptography, the large

semiprime number can be given as a public key, and the prime numbers are the private key.

The private key is used to decrypt messages sent to the recipient as well as to provide a

signature identifying the recipient. Similarly, the public key, which can be revealed openly

with little risk of cryptographical insecurity, encrypts messages and verifies signatures. The

main principle is that the private key, which performs the more secure functions, can be

used to easily determine the public key, but using the public key to find the private key

is more difficult. This lends importance to finding processes, known as one-way functions,

that are easy to perform but whose reverse processes are not—if such functions even exist.

Factorization is conjectured to be an example of a one-way function.

Counting lattice points on a curve is related to several unsolved problems in mathematics

that involve counting lattice points in the interior of a curve. The Gauss circle problem

involves calculating the number of lattice points inside a circle with a large integral radius

R. The number of lattice points is πR2 +O
(
R

131
208

)
[2]. It is conjectured that the error term

is actually O
(
R

1
2

)
. The related Dirichlet divisor problem entails counting lattice points

bounded by a hyperbola y = n
x
. The number of lattice points is n log n + (2γ − 1)n +

O
(
n

131
416

)
, but the error term is conjectured to be O

(
n

1
4

)
[2]. The Dirichlet divisor problem
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is equivalent to finding the asymptotic behavior of the divisor summatory function—the

function
∑n

x=1 d(x), where d(x) is the number of distinct divisors of x.

Counting lattice points on a curve can also help with approximations of area. Although

the problem of finding a curve’s exact area is solved with integration, the process can be

computationally taxing. Conversely, approximating a curve’s area by using lattice points is

more efficient and can lead to reasonably close estimates even with low-power computers.

This conserves time when performing large calculations of area.

7 Conclusion

We calculated an upper bound for the number of lattice points in the graph of a convex

function f : [0, N ] → [0, Nγ] for large integer N and all γ > 0 in terms of N and γ. This

upper bound was equal to min
(

2Nγ, 2 3

√
3
π2N

γ+1
3 , N

)
. We also strengthened previous bounds

on the number of lattice points on a function f : [0, N ]→ [0, N ] with positive first-, second-,

and third-order derivatives and conjectured that the maximum number of lattice points on a

curve with a second derivative strictly between 1 and 2 is 2
√
N3−O(1), achieved with 3

4
x2. In

the future, it is possible to research functions with multivariate input. For example, we may

examine the number of lattice points (x, y, z) ∈ Z3 on a function f : [0, N ]× [0, N ]→ [0, N ]

whose Hessian matrix is positive definite.
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