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Abstract

Let G be a connected complex reductive algebraic group, and let g be its Lie

algebra. Let Λ+ be the set of dominant weights ofG, and let Ω be the set of pairs

of the form (O, E), where O is a nilpotent orbit in g and E is an irreducible

representation of the centralizer Ge for e ∈ O. Then there exists a natural

bijection between Λ+ and Ω, which has come to be known as the Lusztig-

Vogan bijection. For certain groups G, both Λ+ and Ω can be indexed with

relatively simple combinatorial structures. Using these descriptions, algorithms

computing the Lusztig-Vogan bijection γ : Ω → Λ+ when G is the complex

general linear group GLn(C) were previously described by Achar and Rush.

Here we study the algorithm given by Rush and give a closed form for γ in the

case where E is the trivial representation.

Summary

In 2003, Bezrukavnikov proved a conjecture independently formulated by

Lusztig and Vogan which described a correspondence, or bijection, between two

particular sets associated with a reductive group G. This particular bijection

came to be known as the Lusztig-Vogan bijection. A bijection exists between

two sets if each element of one set can be paired with exactly one element of

the other set, and vice versa.

Here we focus on the case where G is the complex general linear group, often

denoted GLn(C), where n is some positive integer. In this case, many of the

objects involved in the bijection give way to simple combinatorial descriptions,

which Achar and Rush used to describe elementary algorithms computing the

bijection for G = GLn(C). We study the algorithm given by Rush and then

derive a closed-form expression that explicitly computes the bijection for a

particular subcase referred to as the trivial representation.



1 Introduction

Representation theory seeks to better understand a particular algebraic structure

by associating each element of that structure with a linear transformation on some

vector space. In this way, techniques from linear algebra may be applied to better

understand the algebraic structure. In particular, one can better understand a group

through its group representations. Group representations arise frequently in a variety

of situations, with applications both inside and outside of mathematics, such as in

number theory and physics.

Starting in the late 1800s, several mathematicians, including Maurer, Chevalley,

Borel, and Kolchin, began studying an important class of groups called algebraic

groups. This theory was developed using methods from algebraic geometry and Lie

theory, with numerous applications in representation theory and group theory. In

particular, one of the more recent discoveries in the representation theory of algebraic

groups is the Lusztig-Vogan bijection.

The Lusztig-Vogan bijection holds an important place in the representation theory

of reductive groups, a subclass of algebraic groups. Investigating the bijection in

important special cases would further reveal some of the properties of the bijection.

Here, we calculate a closed form for the bijection in the case of the complex general

linear group for the trivial representation, one of the most fundamental special cases.

To describe the bijection, we first take G to be a connected complex reductive

algebraic group with Lie algebra g, and take N to be the nilpotent cone in g. Let Λ+

be the set of dominant weights of G and Ω be the set of pairs, up to isomorphism, of

the form (O, E), where O ⊆ N is a nilpotent orbit, with respect to the conjugation

action, and E is an irreducible representation of Ge, the centralizer of e ∈ O. In 1989,

while studying cells in the affine Weyl groups, Lusztig conjectured the existence of
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a natural bijection between Λ+ and Ω [3]. Vogan independently reached the same

conclusion in 1991 while studying associated varieties [7]. In 2003, Bezrukavnikov

demonstrated the existence of such a bijection by considering D, the bounded derived

category of G-equivariant coherent sheaves on N , showing the following [2]:

Theorem 1 (Bezrukavnikov). The Grothendieck group K0(D) is a free abelian group

for which the two sets Λ+ and Ω index bases. Moreover, the transition matrix between

these two bases is upper-triangular.

However, Bezrukavnikov’s proof was nonconstructive. Achar has described algo-

rithms to compute this bijection in the case of G = GLn(C) in [1], which Rush has

improved [4]. We follow the algorithm in [4] to compute the bijection in the case that

E is the trivial representation.

In Section 2, we recall the theory of representations of GLn and dominant weights,

and we calculate the dominant weights for the semisimple Lie algebra sln+1. In Section

3, we describe the algorithm given in [4] and provide example calculations. Section

4 contains an analysis of the algorithm when E is the trivial representation of Ge.

Section 5 contains some directions for future research. For the rest of this paper, we

take all ground fields to be the field of complex numbers.

2 Preliminaries

2.1 Representations of GLn(C)

A representation of the group GLn is a group homomorphism ρ : GLn → GL(V )

for some vector space V . To simplify, for all g ∈ GLn and v ∈ V , we write g · v

to mean ρ(g)(v). When ρ is clear from the context, we also refer to V itself as the

representation.
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The trivial representation is where ρ sends all g ∈ GLn to the identity map on

V ; i.e., for all g ∈ GLn and v ∈ V , we have g · v = v. In addition, for the rest of

this paper, we assume for simplicity that V is 1-dimensional when ρ is the trivial

representation.

We say a representation ρ is irreducible if the only subspaces of V that are invariant

under the action of GLn are {0} and V itself. For instance, the trivial representation

is irreducible, assuming V is 1-dimensional.

The torus T of GLn is the set of invertible diagonal n×n matrices. For all (ratio-

nal) group homomorphisms λ : T → C∗, we write Vλ := {v ∈ V | t · v = λ(t)v, ∀t ∈ T}.

We say λ is a weight of the representation V if Vλ 6= {0}, and Vλ is its weight space.

Because we can identify T with (C∗)n, or the set of the n-tuples (t1, . . . , tn), all

such λ can be written in the form (t1, . . . , tn) 7→ tm1
1 . . . tmn

n , for some m1, . . . ,mn ∈ Z.

This means each weight corresponds to an n-tuple of integers (m1, . . . ,mn). We also

have the weight space decomposition V =
⊕

m1,...,mn∈Z

V(m1,...,mn). By the definition of

the trivial representation, the only weight of the trivial representation of GLn is the

n-tuple (0, . . . , 0), and V = V(0,...,0).

We can define a partial order on the set of weights, saying λ ≥ µ for two weights λ

and µ if and only if we can write λ−µ = a1α1 + · · ·+an−1αn−1, where ai ≥ 0 for all i

and α1 = (1,−1, 0, . . . ), α2 = (0, 1,−1, . . . ), and so on, until αn−1 = (0, 0, . . . , 1,−1).

This partial order allows us to use the idea of highest weights. We say V is a

highest weight representation with weight λ if Vλ 6= {0} and µ ≤ λ for all µ where

Vµ 6= {0}. If we let Zn+ be the set of all n-tuples of weakly decreasing integers,

then for all λ ∈ Zn+, there is an irreducible representation V (λ) of highest weight

λ, with a one-dimensional highest weight space. Moreover, V (λ) is unique up to

isomorphism. In fact, the reverse is also true; from Proposition 2.1 of [6], we know

that {V (λ) | λ ∈ Zn+} is actually a complete collection of irreducible representations
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of GLn. So the weights in the set Zn+ index irreducible representations of GLn. These

weights are called the dominant weights of GLn.

2.2 Complex Semisimple Lie Algebras

Every algebraic group has an associated Lie algebra, which can be constructed from

the tangent space at the identity of the group. It turns out that many properties of

the Lie algebra correspond to the algebraic group, and vice versa.

Recall preliminaries on Lie algebras: let g be a complex semisimple Lie algebra.

Then there exists a subalgebra h of g that is both abelian and self-normalizing (self-

normalizing means if for some x ∈ g we have [x, h] ⊆ h, then x ∈ h). We call h, which

is unique up to conjugation, a Cartan subalgebra.

The adjoint action of an element x ∈ g on g is defined as adx := [x,−]. The

Killing form is defined as κg(x, y) := Tr(adxady) for x, y ∈ g. Its restriction to h is

nondegenerate, so we identify h with h∗ under the isomorphism that takes x to the

map κg(x,−).

Now ∀α ∈ h∗\{0}, let

gα := {x ∈ g | ∀h ∈ h : [h, x] = α(h)x}.

If gα 6= {0}, then we call α a root and gα its root space. Let R be the set of all roots

of g. When g is complex and semisimple, there exists a root space decomposition:

g = h⊕
⊕
α∈h∗
α 6=0

gα.

R satisfies the following properties:

4



1. R spans h∗.

2. If α ∈ R and λ ∈ C, then λα ∈ R if and only if λ = ±1.

3. For all α, u ∈ h∗, let 〈〈α, u〉〉 := 2 (u,α)
(α,α)

, where (−,−) is the Killing form on h∗

inherited from the isomorphism with h. Then for all α, u ∈ R, 〈〈α, u〉〉 ∈ Z.

4. There exists a subset Π = {α1, . . . , αs} ⊆ R such that Π forms a basis for h∗,

and for all α ∈ R, α = a1α1 + · · ·+asαs, where the ai are either all nonnegative

or all nonpositive. We refer to the αi as the simple roots, and we call α a positive

root if the ai are nonnegative, and a negative root otherwise. We write R+ as

the set of all positive roots, and R− as the set of all negative roots, so that R+

and R− partition R.

The root lattice Q of g is defined as the lattice in h∗ generated by the root system

R (or ZR, the Z-span of R). The set of weights of g, or the weight lattice, is defined as

the set P := {β ∈ h∗ | 〈〈α, β〉〉 ∈ Z, ∀α ∈ Q}. The set of dominant weights is defined

as P+ := {λ ∈ P | 〈〈α, λ〉〉 ≥ 0, ∀α ∈ R+}. This definition of dominant weights for

semisimple Lie algebras corresponds to the definition in Section 2.1, which was given

for dominant weights of GLn.

2.3 Calculations of Dominant Weights

To study irreducible representations of GLn, we first calculate the dominant weights

of sln+1, the set of (n+ 1)× (n+ 1) matrices with complex entries and trace 0, using

the commutator as the Lie bracket. In this case, the Cartan subalgebra h of g is the

set of all diagonal matrices with trace 0.

For all 1 ≤ i, j ≤ n + 1 such that i 6= j, let Eij be the (n + 1) × (n + 1) matrix

with all zero entries, except for a 1 entry in the (i, j) position. Additionally, for
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1 ≤ i ≤ n+ 1, define εi ∈ h∗ such that εi(h) equals the (i, i) entry of the matrix h for

all h ∈ h.

Now for all h ∈ h and i 6= j, we have that [h,Eij] = (εi − εj)(h). Thus the roots

of g are of the form εi − εj. The set Π of simple roots is {ε1 − ε2, . . . , εn − εn+1}. To

simplify, we write αi = εi − εi+1.

For all λ ∈ h∗, let λ = a1α1 + · · ·+ anαn = λ1ε1 + · · ·+ λn+1εn+1. Then

λ = a1α1 + · · ·+ anαn = a1ε1 + (a2 − a1)ε2 + · · ·+ (an − an−1)εn − anεn+1.

So we write λ1 = a1, λ2 = a2 − a1, . . . , λn = an − an−1, λn+1 = −an.

We now compute the dominant weights of g, using the fact that λ is a dominant

weight if and only if 〈〈α, λ〉〉 ∈ Z≥0 for all simple roots α ∈ Π.

So for 2 ≤ i ≤ n − 1, we have 〈〈αi, λ〉〉 = −ai−1 + 2ai − ai+1 = λi − λi+1.

Additionally, 〈〈α1, λ〉〉 = 2a1 − a2 = λ1 − λ2 and 〈〈αn, λ〉〉 = 2an − an−1 = λn − λn+1.

Thus λ ∈ P+ if and only if λ1, λ2, . . . , λn+1 is a nonincreasing sequence, where

each difference λi+1 − λi is a nonnegative integer. Hence P+ can be identified with

the set of n-tuples of weakly decreasing sequences of nonnegative integers.

This type of reasoning can be used to deduce the fact that the dominant weights

of GLn correspond to n-tuples of weakly decreasing integers, as stated in Section

2.1. And similar reasoning can also be applied to the other classical Lie algebras,

so2n, so2n+1, and sp2n, and their corresponding Lie groups. For more details on Lie

algebras, refer to [5].
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3 An Algorithm for Computing the Lusztig-Vogan

Bijection for G = GLn(C)

In [1], Achar explicitly described the Lusztig-Vogan bijection for the case G = GLn,

which was improved and expanded upon by Rush in [4]. While Achar’s algorithm

featured structures called weight diagrams, the focus of Rush’s paper was an algorithm

using integer sequences.

In the caseG = GLn(C), we identify both Λ+ and Ω with combinatorial structures.

First, every element of Λ+ corresponds to a weakly decreasing sequence of n integers.

As for Ω, let X ∈ g be nilpotent, let its orbit, under conjugation, be OX , and let GX

be the stabilizer of X in G. The Jordan normal form of O corresponds to a partition

α = [α1, α2, . . . , αl] = [ka11 , . . . , k
am
m ] of n, where the αi are the sizes of the l Jordan

blocks.

Now every irreducible representation of GX can be identified with an irreducible

representation of the reductive quotient Gred
X
∼= GLa1×· · ·×GLam . Using the concept

of highest weight representations as given in Section 2.1, irreducible representations of

GLa1×· · ·×GLam are indexed by m-tuples (µ1, . . . , µm), where each µi is a dominant

weight of GLai . Say that an integer sequence ν = [ν1, . . . , νl] is dominant with respect

to α = [α1, . . . , αl] if αi = αi+1 implies νi ≥ νi+1, and let Ωα be the set of sequences

which are dominant with respect to α. Thus Ω can be viewed as ordered pairs (α, ν),

where α is a partition of n and ν ∈ Ωα.

Let α∗ = [α∗1, . . . , α
∗
s] be the transpose partition of α, where α∗k equals the number

of parts of α that are at least k, for all 1 ≤ k ≤ s := α1. Let Lα ∼= GLα∗
1
×· · ·×GLα∗

s

be the Levi factor of the parabolic subgroup associated with X, and Λ+
α be the set of

dominant weights of Lα with respect to the Borel subgroup Bα. Each weight in Λ+
α

can be identified with the concatenation of a dominant weight each of GLα∗
i

for all
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1 ≤ i ≤ s.

3.1 The Algorithm

We now give a description of the integer-sequences algorithm in [4] to compute the

Lusztig-Vogan bijection γ : Ω→ Λ+. Briefly, given a partition α ` n and ν ∈ Ωα, the

algorithm A outputs A(α, ν) ∈ Λ+
α . Then Rush [4] showed that:

Theorem 2. γ(α, ν) = dom(A(α, ν) + 2ρα).

Here, for an integer sequence µ, dom(µ) finds the unique element of Λ+ in the W -

orbit of µ, where W is the Weyl group of G. This definition coincides wih rearranging

the terms in µ into nondecreasing order. In addition, ρα is defined as the half-sum of

the positive roots of Lα.

We first define a few functions: let α = [α1, . . . , αl] be a sequence of l positive

integers, and ν = [ν1, . . . , νl] be a sequence of l integers. Let i be an integer where

1 ≤ i ≤ l, and let the (possibly empty) sets Ia, Ib partition the set {1, . . . , l}\{i}. We

define

C(α, ν, i, Ia, Ib) :=


νi −

∑
j∈Ia

min{αi, αj}+
∑
j∈Ib

min{αi, αj}

αi

 ,
We now define the function R(α, ν). First, let Sl be the set of permutations on

the set {1, . . . , l}. Then R is a function Nl×Zl → Sl, and R is computed iteratively

over l steps, where each step determines a new value of the permutation.

Specifically, let R(α, ν) = σ. The ith step of the computation finds σ−1(i), where

σ−1 is the inverse permutation of σ. We write Ji := σ−1({1, . . . , i− 1}), the image of

{1, . . . , i− 1} under σ−1, and J ′i := {1, . . . , l}\Ji.
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Then σ−1(i) is chosen to be the value of j ∈ J ′i such that the tuple

(C (α, ν, j, Ji, J
′
i\{j}) , αj, νj,−j)

is lexicographically maximal.

We now define the algorithm U as a function Nl × Zl ×Sl → Zl. In particular,

U outputs a weakly decreasing sequence. The algorithm U is also computed over l

steps.

If we let U(α, ν, σ) = [µ1, . . . , µl], then the ith step determines µi. On the ith step,

as in R, let Ji := σ−1({1, . . . , i− 1}) and J ′i := {1, . . . , l}\Ji. Then µi is computed as

min
{
µi−1, C

(
α, ν, σ−1(i), Ji, J

′
i\{σ−1(i)}

)
− l + 2i− 1

}
,

unless i = 1, in which case µi is just C (α, ν, σ−1(i), Ji, J
′
i\{σ−1(i)})− l + 2i− 1.

Now using the functions above, we can describe A itself. We set A(α, ν) to be a

function A : Yn,l×Zl → Zn, where Yn,l denotes the set of partitions of n into l parts.

The algorithm A is computed iteratively. To compute A(α, ν), it first sets, in

order:

σ := R(α, ν),

µ := U(α, ν, σ),

α′ := [α∗2, . . . , α
∗
s]
∗ ,

ν ′ :=
[
ν1 − µσ(1), . . . , να∗

2
− µσ(α∗

2)

]
.

Here, α∗ = [α∗1, . . . , α
∗
s] is the transpose partition of α as defined above, and µi is the

ith integer in the sequence µ for all 1 ≤ i ≤ l = α∗1. In particular, note that both α′
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and ν ′ have α∗2 parts.

Finally, A(α, ν) is set to be the result when A(α′, ν ′) is appended to the end of µ.

Now to compute γ(α, ν) as stated in Theorem 2, we first add 2ρα to A(α, ν)

componentwise, and then order all n integers in weakly decreasing order to obtain a

dominant weight of GLn.

In this case, ρα is just the concatenation of s sequences, one per part in α∗,

starting with α∗1 and ending with α∗s. The sequence corresponding to the kth part

α∗k is
[
α∗
k−1
2
,
α∗
k−3
2
, . . . ,

−(α∗
k−1)
2

]
. For instance, if α = [3, 2], then α∗ = [2, 2, 1] and

ρα =
[
1
2
,−1

2
, 1
2
,−1

2
, 0
]
.

3.2 An Example Calculation

To show the algorithm in action, we compute it in the case of n = 4, α = [4]. Here

α∗ = [1, 1, 1, 1], l = 1, and s = 4. As Ω[4] = {[ν1] | ν1 ∈ Z}, we have ν := [ν1] for some

integer ν1. To clarify the notation, we write αk, νk, σk, and µk to denote the values

of α, ν, σ, and µ, respectively, on the kth iteration on the algorithm.

We must compute A(α, ν). First, σ1 = R ([4], [ν1]) is a permutation on l = 1

element, and so it is the identity permutation 1. Now we compute µ1 = U ([4], [ν1], 1),

which is a 1-term sequence. There is only one step, and we find

µ1
1 = C ([4], [ν1], 1, ∅, {1}\{1})− 1 + 2− 1

=

⌈
ν1 − 0 + 0

4

⌉
=

⌊
ν1 + 3

4

⌋
.

So µ1 =
[⌊

ν1+3
4

⌋]
.

For the next iteration, we have α2 = [1, 1, 1]∗ = [3] and ν2 =
[
ν1 −

⌊
ν1+3
4

⌋]
=
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[⌊
3ν1
4

⌋]
. So we must calculate A

(
[3],
[⌊

3ν1
4

⌋])
. Again, σ2 = R

(
[3],
[⌊

3ν1
4

⌋])
is only

a permutation on 1 element, and so it is the identity permutation 1. To find µ2 =

U
(
[3],
[⌊

3ν1
4

⌋]
, 1
)
, again a 1-term sequence, we compute

µ2
1 = C

(
[3],

[⌊
3ν1
4

⌋]
, 1, ∅, {1}\{1}

)
− 1 + 2− 1

=

⌈⌊
3ν1
4

⌋
− 0 + 0

3

⌉

=

⌊
ν1 + 2

4

⌋
.

So µ2 =
[⌊

ν1+2
4

⌋]
.

For the third iteration, we have α3 = [1, 1]∗ = [2] and ν3 =
[⌊

3ν1
4

⌋
−
⌊
ν1+2
4

⌋]
. We

must find A([2],
[⌊

3ν1
4

⌋
−
⌊
ν1+2
4

⌋]
). Then σ3 = 1, the identity permutation, and to

find µ3 = U
(
[2],
[⌊

3ν1
4

⌋
−
⌊
ν1+2
4

⌋]
, 1
)
, we find

µ3
1 = C

(
[2],

[⌊
3ν1
4

⌋
−
⌊
ν1 + 2

4

⌋]
, 1, ∅, {1}\{1}

)
− 1 + 2− 1

=

⌈(⌊
3ν1
4

⌋
−
⌊
ν1+2
4

⌋)
− 0 + 0

2

⌉

=

⌊
ν1 + 1

4

⌋
.

Thus µ3 =
[⌊

ν1+1
4

⌋]
.

Finally, on the fourth iteration, we have α4 = [1]∗ = [1] and ν4 =
[⌊

3ν1
4

⌋
−
⌊
ν1+2
4

⌋
−
⌊
ν1+1
4

⌋]
=[⌊

ν1
4

⌋]
. To find A([1],

[⌊
ν1
4

⌋]
), we first have again σ4 = 1, and then we find µ4 =
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U
(
[1],
[⌊

ν1
4

⌋]
, 1
)
:

µ4
1 = C

(
[1],
[⌊ν1

4

⌋]
, 1, ∅, {1}\{1}

)
− 1 + 2− 1

=

⌈⌊
ν1
4

⌋
− 0 + 0

1

⌉

=
⌊ν1

4

⌋
.

Thus µ4
1 =

[⌊
ν1
4

⌋]
, and the algorithm stops. To find A([4], [ν1]), we concatenate the

four sequences µ1, µ2, µ3, µ4 to obtain
[⌊

ν1+3
4

⌋
,
⌊
ν1+2
4

⌋
,
⌊
ν1+1
4

⌋
,
⌊
ν1
4

⌋]
.

To find γ([4], [ν1]), we must first find 2ρα. Because α∗ = [1, 1, 1, 1], ρα = [0, 0, 0, 0].

So

γ([4], [ν1]) = dom (A([4], [ν1]) + 2[0, 0, 0, 0])

= dom

([⌊
ν1 + 3

4

⌋
,

⌊
ν1 + 2

4

⌋
,

⌊
ν1 + 1

4

⌋
,
⌊ν1

4

⌋]
+ 2[0, 0, 0, 0]

)
=

[⌊
ν1 + 3

4

⌋
,

⌊
ν1 + 2

4

⌋
,

⌊
ν1 + 1

4

⌋
,
⌊ν1

4

⌋]
.

4 The Case of the Trivial Representation

The algorithm can be computed more easily when ν = [0l], which corresponds to E

being the trivial representation. We claim that:

Theorem 3. If α = [α1, α2, . . . , αl] is a partition of n, then A(α, [0l]) = [0n].

Proof. As defined above, let α∗ = [α∗1, . . . , α
∗
s] be the transpose partition of α. We

induct on s.

For both the base case s = 1 and the inductive step, it suffices to show that for any

α with l parts, the function U
(
α, [0l], σ

)
outputs [0l], where σ = R

(
α, [0l]

)
. Indeed,
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suppose this is true. Then for the base case s = 1, the algorithm has only one iteration

and A(α, [0l]) = U
(
α, [0l], σ

)
= [0l] = [0n]. As for the inductive step, the iteration

following the calculation of U
(
α, [0l], σ

)
uses the values (α′)∗ = [α∗2, . . . , α

∗
s] and

ν ′ = [0l]−[0l] = [0l]. Because the value of s decreases by 1, we know A(α′, ν ′) =
[
0n−l

]
,

as the partition α′ has parts summing to n− α∗1 = n− l. Thus appending the [0n−l]

to the end of µ = U
(
α, [0l], σ

)
= [0l] results in [0n], as desired.

We now proceed to show that U
(
α, [0l], σ

)
= [0l]. For all 1 ≤ i ≤ l, define Ji and J ′i

in the same way as in the description of the algorithm, namely Ji = σ−1({1, . . . , i−1})

and J ′i = {1, . . . , l}\Ji. We will induct on i to show that µi = 0 for all i.

For the base case i = 1, by the definitions of A, R, and U , it suffices to show

that the expression C
(
α, [0l], j, Ji, J

′
i\{j}

)
= C

(
α, [0l], j, ∅, {1, . . . , l}\{j}

)
attains a

maximum of exactly l − 2i + 1 = l − 1 when it is taken over all j ∈ J ′i = {1, . . . , l}.

We compute:

C
(
α, [0l], j, ∅, {1, . . . , l}\{j}

)
=


0− 0 +

∑
k∈{1,...,l}\{j}

min{αj, αk}

αj


=

⌈
αj(j − 1) + (αj+1 + · · ·+ αl)

αj

⌉
= j − 1 +

⌈
αj+1 + · · ·+ αl

αj

⌉
≤ j − 1 +

⌈
αj(l − j)

αj

⌉
= l − 1.

Equality holds at j = l, so the maximum over all j is exactly l − 1.

For the inductive step, where i ≥ 2, it suffices to show that the expression

C
(
α, [0l], j, Ji, J

′
i\{j}

)
attains a maximum of at least l − 2i + 1 when it is taken
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over all j ∈ J ′i .

In fact, such a j can be easily constructed as the maximum value of r such that

αr ∈ J ′i . Let m be this maximum value of r. Again, we just compute:

C
(
α, [0l],m, Ji, J

′
i\{m}

)
=

⌈
0− (αm(i− 1− (l −m)) + (αm+1 + · · ·+ αl)) + (l − i)(αm)

αm

⌉
=

⌈
αm(2l − 2i−m+ 1)− (αm+1 + · · ·+ αl)

αm

⌉
=

⌈
2l − 2i−m+ 1− αm+1 + · · ·+ αl

αm

⌉
≥ 2l − 2i−m+ 1 +

⌈
−(l −m)αm

αm

⌉
= 2l − 2i−m+ 1− (l −m)

= l − 2i+ 1.

Thus C
(
α, [0l], j, Ji, J

′
i\{j}

)
does indeed attain a maximum of at least l − 2i+ 1.

After inducting on i, we have that µi = 0 for each 1 ≤ i ≤ l, so U(α, [0l], σ) = [0l].

And after inducting on s, this implies A(α, [0l]) = [0n] for any α.

Corollary 3.1. For all partitions α with l parts, γ(α, [0l]) = dom(2ρα).

This result follows directly from Theorem 3 and Theorem 2, as γ(α, [0l]) =

dom(A(α, [0l]) + 2ρα) = dom(2ρα). This provides a direct calculation for γ(α, [0l])

which avoids the intermediary A.

Corollary 3.2. For all positive integers n, γ([n], [0]) = [0n] and γ([1n], [0n]) = [n −

1, n− 3, . . . ,−(n− 1)].

This follows directly from Corollary 3.1 and the explicit formulas for ρα in these

two cases given in Section 3.1.

For example, using Corollary 3.1, γ([3, 2], [02]) = dom([1,−1, 1,−1, 0]) = [1, 1, 0,−1,−1].

Using Corollary 3.2, γ([3], [0]) = [0, 0, 0] and γ([13], [03]) = [2, 0,−2].
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5 Future Work

The relative recentness of work done on the Lusztig-Vogan bijection opens several pos-

sible avenues for future research. An obvious direction would be to extend Theorem

3 and Corollary 3.1 by investigating other cases of the algorithm for GLn. Another

direction is to continue the work in [4] on the Lusztig-Vogan bijection for other clas-

sical groups, such as the symplectic group Spn(C) and the special orthogonal group

SOn(C). It may be possible to develop similar algorithms to compute the bijection

in these cases. Another alternative would be to use Lusztig’s work on cells in affine

Weyl groups to study the bijection from a different point of view.

6 Conclusion

We discussed group representations and dominant weights, focusing on the complex

general linear group GLn. Then we studied an algorithm computing the Lusztig-

Vogan bijection for this reductive group, focusing in particular on the case of the

trivial representation for Ge. Using the algorithm, we found an explicit description

for the dominant weight corresponding to the trivial representation for any nilpotent

orbit.
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