
Lower Bounds on the Discrete Newton’s Algorithm for
the Submodular Line Search Problem

SPUR+ Paper, Summer 2022

Evgeniya Artemova and Christina Yu
Mentor: Yuchong Pan

Project suggested by Michel Goemans

August 3, 2022

Abstract

Submodular functions arise naturally from the principle of diminishing marginal
returns in economics. We are interested in the line search problem in the submodular
polytope of a submodular function, which asks for the maximum step length within
the polytope in a given search direction from a given starting point. This problem
can be solved by the discrete Newton’s algorithm. While linear and quadratic upper
bounds are known on the number of iterations of the algorithm in the cases where the
search direction is nonnegative and arbitrary, respectively, we have little knowledge on
whether there are matching lower bounds in these two cases. In this paper, we provide
several initial attempts towards lower bound constructions in these problems.

1 Introduction
In this section, we first introduce submodular functions, and define a line search problem in
a polytope associated with a submodular function. Then, we present an iterative algorithm
called the discrete Newton’s algorithm which solves this line search problem.

1.1 Submodular Functions
Submodularity is an important concept in combinatorial optimization, and has attracted
increasing interest from other relevant fields such as machine learning and game theory.
Informally, submodularity characterizes the diminishing returns property, i.e., the property
that the marginal benefit of adding an additional element to a set decreases as the input set
expands. Formally, for all A ⊆ B ⊊ V and i ∈ V \B,

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B).

1

Equivalently, we can define a submodular function by the uncrossing operation. In other
words, a set function f : 2V → R is submodular if and only if for all A, B ⊆ V ,

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

We are sometimes also interested in supermodular functions; we say that a set function f
is supermodular if −f is submodular. In addition, we say that a set function f is modular if
f is both submodular and supermodular. It can be easily seen that a set function f on some
finite ground set V is modular if and only if it is of the form f(S) = ∑

j∈S bj for some vector
b ∈ RV , so modular functions are also called linear functions. Many classic combinatorial
optimization problems have modular objective functions, such as the cardinality function.

Submodularity captures many combinatorial structures. We provide two examples in this
section for the reader’s reference. Firstly, if f(S) is the number of connected components in
the subgraph induced by edges S in an undirected graph G, then f is supermodular (and
hence −f is submodular). Secondly, given a matrix A, if g(S) is the rank (i.e., the maximal
number of independent columns) of the submatrix induced by a subset S of the columns,
then g is submodular. Indeed, the notion of independence in a matrix can be generalized
to that in a matroid. For conciseness, we avoid defining matroids in this short paper, but
note that the rank function of any matroid is submodular. Matroid rank functions form
an important subclass of submodular functions, and the connection between submodular
functions and matroids is deep.

Submodularity gives us some sort of “discrete smoothness.” On one hand, submodular
functions play a similar role as convex functions in continuous optimization. An argument
for this case is that convex functions and submodular functions are both easy to minimize
but hard to maximize. A polynomial time exact algorithm is known to solve unconstrained
submodular minimization, but we only have a 1/2-approximation for maximization. In
addition, any set function is submodular if and only if its Lovász extension is convex. On the
other hand, surprisingly, submodular functions share several properties of concave functions.
An argument for this case is that the marginal benefit f(A ∪ {i}) − f(A) can be viewed
as a discrete derivative ∂if(x) = f(x + ei) − f(x), and the diminishing returns property
seems to require these discrete derivatives to be non-increasing, analagous to the definition
of concavity.

Due to the limit of this paper, we refer the interested reader to the seminal survey of
Lovász [5] for other examples, applications and properties of submodular functions, and their
connections to convex and concave functions, respectively.

1.2 Submodular Line Search and Discrete Newton’s Algorithm
Polyhedral combinatorics study polyhedra or polytopes associated with discrete sets that
arise from combinatorial optimization problems, such as matchings and stable sets. A com-
mon theme in the research of submodular functions is to study polyhedra or polytopes
associated with a submodular function. We define the submodular polytope, or extended
polymatroid, of a submodular function f : 2V → R on some finite ground set V to be

P (f) =
{
x ∈ RV | x(S) ≤ f(S) ∀S ⊆ V

}
,

2

where we denote x(S) = ∑
j∈S xj for any vector x ∈ RV and S ⊆ V .

A line search problem asks for the maximum step length within a polytope in a given
search direction from a given starting point. An application of line search is to implement the
algorithmic version of Carathéodory’s theorem in convex geometry, which we briefly explain
below. The classic Carathéodory’s theorem states the following:

Theorem 1 (Carathéodory’s theorem). Any point x ∈ Rd lying in conv P for some finite
set P with conv P full-dimensional can be written as the convex combination of at most d+1
points in P .

For completeness, we give a proof of Carathéodory’s theorem, which implies that line
search can be used to find such a convex combination. This proof can be found in [7].

Proof. We proceed by induction on d. For the base case d = 1, any finite set P ⊆ R1 with
dim(conv P) = 1 has at least two vertices, so the theorem follows.

Let d ∈ N. Assume that the theorem holds for all d′ ∈ N with d′ ≤ d. Let P ⊆ Rd+1 be
finite and such that dim(conv P) = d + 1. Let x ∈ conv P . Let v1 be a vertex of conv P .
WLOG, assume that x lies in the interior of P ; otherwise, x lies on a face of P and we are
done by the inductive hypothesis. Perform a line search in conv P from v1 in the search
direction x − v1. Let x′ be the intersection of the line and conv P . Since x ∈ conv P , then
x′ = v1 + δ(x− v1) for some δ ≥ 1. Let λ1 ∈ [0, 1] be such that x = λ1v1 + (1− λ1)x′.

Hence, x′ lies on a face F of P such that F ̸= conv P , which is a polytope of dimension
at most d. By induction, x′ can be written as a convex combination of at most d + 1 vertices
of F . Since x is a convex combination of v1 and x′, then x can be written as a combination
of at most d + 2 vertices of conv P , completing the proof.

In particular, we are interested in the following line search problem in the submodular
polytope of a submodular function:

Problem 2 (Submodular line search problem). Given a submodular function f : 2V → R
on some finite ground set V , a vector x0 ∈ P (f) and a vector a ∈ R, find the largest δ such
that x0 + δa ∈ P (f).

This can be interpreted as the polytope giving you a boundary, and within this boundary
you have an initial point x0. Then you are given some direction a, and you are trying to
work out how far you can go in that direction without reaching a boundary.

Without loss of generality, we can assume that f is non-negative. To see this, let f ′ : V →
R be defined by f ′(S) = f(S)− x0(S), and then finding the largest δ such that δa ∈ P (f ′) .
We also notice that since x0 ∈ P (f), we have that for all S ⊆ V , x0(s) ≤ f(S) if and only
if f(S) − x0(S) ≥ 0 and so 0 ∈ P (f ′). This then implies f ′(S) ≥ 0 for all subsets S ⊆ V .
Thus we can consider the following equivalent problem

δ∗ = max
{

δ | min
S⊆V

f(S)− δa(S) ≥ 0
}

. (1)

This problem can be solved by the discrete Newton’s algorithm by using the cutting plane
method ([3]). The discrete Newton’s algorithm begins by choosing δ1 ≥ δ∗, and then finding
the set S that minimizes the function f(S) − δa(S). It then sets δ2 ≤ δ1 to the value at

3

which, for this set S, f(S)−δa(S) = 0. It keeps iterating while there exists a set S such that
f(S)− δia(S) is negative, and terminates when f(S)− δia(S) on all the sets is nonnegative,
returning δ∗ = δi. We give pseudocode for the discrete Newton’s algorithm in Algorithm 1.

Algorithm 1 Discrete Newton’s Algorithm
i← 0
δ1 ← mini∈V,a({i})>0 f({i})/a({i})

h0 ← 1
while hi ̸= 0 do

i← i + 1
hi ← minS⊆V f(S)− δia(S)
Si ←S⊆V f(S)− δia(S)
δi+1 ← f(Si)/a(Si)

end while
return δ∗ ← δi

For simplicity throughout the rest of this paper, we define ki(S) = f(S)− δia(S).
We visualize the discrete Newton’s algorithm by considering the graph of each function

f(Si)− δa(Si) in the parameter δ shown in Figure 1.

δ1δ2δ3δ4
δ

f(S)− δa(S)

Figure 1: The visualization of the discrete Newton’s algorithm.

The lower envelope of these lines are coloured in red, and the points along this line where
the slope changes are called breakpoints. Note that this curve is piecewise linear, continuous,
and concave. We note that the number of breakpoints is always greater than or equal to the
number of iterations, as in every iteration we must select a new line on the envelope. This
corresponds to selecting a distinct set every time, and based on the operation of the discrete
Newton’s algorithm, it can only select any set once.

4

A lemma that is easy to observe is the following.

Lemma 3 ([3]). Discrete Newton’s Algorithm terminates in a finite number of steps t and
generates sequences:

1. h1 < h2 < · · · < ht−1 < ht = 0,
2. δ1 > δ2 > · · · > δt−1 > δt = δ∗ ≥ 0,
3. a1(S1) > a2(S2) > · · · > at−1(St−1) > at(St) ≥ 0.

Furthermore, if at(St) > 0 then δ∗ = 0.

The proof of Lemma 3 can be found in [3], and is omitted here.
We divide our analysis by considering when the vector a is nonnegative and when it is

arbitrary, as there are different upper bounds known in these two instances. When a is
nonnegative, we know that the discrete Newton’s algorithm takes at most n + 1 iterations.
When a is an arbitrary vector, on the other hand, the discrete Newton’s algorithm takes at
most n2 + O(n log2(n)) iterations.

1.3 Outline
In section 2, we consider the case when we have a nonnegative vector a. We present the
proof of the upper bound on the number of iterations of the discrete Newton’s algorithm,
a matching lower bound construction for a slightly relaxed version of the discrete Newton’s
algorithm and further that can be done.

In section 3, we do the same thing with an arbitrary a – we sketch the proof of the upper
bound on the number of iterations of the discrete Newton’s algorithm, and summarize our
progress and ideas for a possible lower bound construction, as well as any observations we
made.

We finish up with section 4, where we discuss future directions we could go with this
problem.

1.4 Acknowledgements
We thank Michel Goemans for suggesting this project, and Yuchong Pan for mentoring us.
We also thank the organizers of the Summer Program in Undergraduate Research, David
Jerison and Ankur Moitra, for making this program happen and meeting with us weekly to
advise us on our project.

2 Nonnegative Vectors a

It is known ([9],[4]) that if a is nonnegative, then the discrete Newton’s algorithm terminates
in at most n + 1 iterations. We reiterate the proof of this upper bound for completeness,
and then present our construction of a tight lower bound with some relaxation of the initial
choice of δ.

5

2.1 A Linear Upper Bound
We recreate the proof of the upper bound construction. We begin with the definition of
strong quotients given in [4].

Definition 4. Given two submodular functions f and f ′ with the same ground set V , we
say f ′ is a strong quotient of f if Y ⊆ Z implies

f(Z)− f(Y) ≥ f ′(Z)− f ′(Y).

We denote this as f → f ′.

We find that minimizers of submodular functions related by strong quotients are some-
what closed by unions and intersections.

Theorem 5 ([9]). Let A and B be minimizers of f and f ′, respectively. If f → f ′, then
A ∩B and A ∪B are minimizers of f and f ′, respectively.

Proof. We first note that since B is a minimizer of f ′, we have 0 ≤ f ′(A ∪ B) − f ′(B),
and that since A is a minimizer of f , we have f(A) − f(A ∩ B) ≤ 0. We also have that
as f → f ′, f ′(A ∪ B) − f ′(B) ≤ f(A ∪ B) − f(B), and using the submodularity of f ,
f(A ∪B)− f(B) ≤ f(A)− f(A ∩B). Putting this all together we get that

0 ≤ f ′(A ∪B)− f ′(B) ≤ f(A)− f(A ∩B) ≤ 0.

So we can conclude that f ′(A∪B) + f(A∩B) = f ′(B) + f(A). As A and B are minimizers
of f and f ′, respectively, we must have that A ∩ B and A ∪ B are minimizers of f and f ′,
respectively.

Corollary 6. Let f → f ′, and A and B be the maximal minimizing subsets of f and f ′

respectively. Then, B ⊆ A.

Proof. Assume, for sake of contradiction, that B ̸⊆ A. Then consider the set A ∪ B. From
Theorem 5, we know that this is also a minimizer. As B ̸⊆ A, we know |A ∪B| > |A|.

We can then consider the ki’s generated by the discrete Newton’s algorithm. We notice
that they form a chain of strong quotients.

Lemma 7. Let ki come from the discrete Newton’s algorithm, as defined above. Then,

k1 ← k2 ← · · · ← kl−1 ← kl.

Proof. Consider ki and ki+1. Based on Lemma 3, we have that given two sets Z and Y such
that Y ⊆ Z, δia(Z\Y) ≥ di+1a(Z\Y). This is equivalent to δi(a(Y)− a(Z)) ≤ δi+1(a(Y)−
a(Z)) because a is linear. Therefore we get,

(f(Z)− δia(Z))− (f(Y)− δia(Y)) ≤ (f(Z)− δi+1a(Z))− (f(Y)− δi+1a(Y)).

This is equivalent to ki(Z) − ki(Y) ≤ ki+1(Z) − ki+1(Y), which then implies that ki ←
ki+1.

6

Theorem 8. For a nonnegative, the discrete Newton’s algorithm terminates in at most n+1
iterations.

Proof. By Corollary 6, if we take Si is the maximal minimizer of ki, we get that

S1 ⊇ S2 ⊇ · · · ⊇ Sl−1 ⊇ Sl.

Additionally we note that Lemma 3 implies that the minimizing sets between two iter-
ations of the discrete Newton’s algorithm cannot be the same (as you make sure that the
minimizing set from the previous iteration is now always nonnegative). The only exception
is the last iteration on which it terminates (because then all the sets give nonnegative values
for that δ). Thus, we actually have that

S1 ⊋ S2 ⊋ · · · ⊋ Sl−1 ⊇ Sl,

and we can conclude that l ≤ n + 1, so discrete Newton’s algorithm take at most n + 1
iterations.

2.2 A Matching Lower Bound With a Relaxed Initial δ

We construct a modular function f and an a ∈ Rn such that the discrete Newton’s algorithm
takes n+1 iterations. However, we must take the following remark about the choice of initial
δ1 into account.

With the original discrete Newton’s algorithm given in Algorithm 1 where δ1 := mini∈V f{i}/ai,
any construction with f modular will not give us a tight lower bound. Suppose f is defined
by a vector b ∈ Rn such that f(S) = ∑

j∈S bj. With this “good” initialization of δ1, we
have that bi/ai ≥ δ1, so bi − δ1ai ≥ 0 for all i ∈ V . Hence h1 = minS⊆V f(S) − δ1a(S) =
minS⊆V

∑
i∈S bi− δ1ai ≥ 0. By Lemma 1, Newton’s algorithm terminates after one iteration.

Thus in order to obtain a construction taking Ω(n) iterations with the original “good”
initial δ1, we must consider a submodular f that is not modular. Empirically we have found
this to be quite tricky, and hence an area for further exploration. Since the value of δ1 is
not used in the proof of Theorem 8, we relax this requirement and allow δ1 to be sufficiently
large in our construction.

Theorem 9. If δ1 is initialized to be sufficiently large, then there exists a nonnegative sub-
modular function f : 2V → R on a finite ground set V = [n] and a nonnegative vector a ∈ RV

for which the discrete Newton’s algorithm requires exactly n + 1 iterations.

We first sketch the intuition behind our approach. Let the ground set be V = [n]. Based
on the proof of Theorem 8, we want a chain of maximal minimizing sets A1 ⊋ A2 ⊋ · · · ⊋ An.
Let Ai = {i, . . . , n}. Our goal is to construct f and a such that Ai is the unique minimizing
set on the ith iteration.

Let li(δ) := f(Ai) − δa(Ai). Recall that δi+1 = f(Si)/a(Si), so we want li(δi+1) = 0.
Assume δi = 2−(i−1) and li(δ1) = −2−(i−1), so the graph of our desired li’s is as shown in
Figure 2.

7

1
8

1
4

1
2

1

-1

−1
2

−1
4

δ1δ2δ3δ4
δ

f(S)− δa(S)

Figure 2: The graph of the desired lines li corresponding to the sets Ai.

To achieve such lines li, we want

f(Ai) = 2
2i(2i − 1) , (2)

a(Ai) = 2
2i − 1 . (3)

Proof. Our construction is as follows. Let Ai = {i, . . . , n}. Let f : 2V → R be a modular
function defined by a vector b ∈ Rn such that f(S) = ∑

j∈S bj, where

bj =


2j+2−2j−1

2j(2j−1)(2j+1−1) if j ∈ [n− 1],
2

2n(2n−1) if j = n.
(4)

Define a ∈ Rn such that

aj =


2j+2−2j+1

(2j−1)(2j+1−1) if j ∈ [n− 1],
2

2n−1 if j = n.
(5)

We can easily check that bj = f(Aj)− f(Aj+1) and aj = a(Aj)−a(Aj+1) for j ∈ [n− 1], and
bn = f(An), an = a(An). Hence (2) and (3) hold for this choice of f and a.

By straightforward calculations using (4) and (5) to find the δ-intercepts of lines, we
observe that

(a) If j ∈ [n − 1], then bj − δaj > 0 if and only if δ < (2j+2 − 2j − 1)/22j+1, where
2−j < (2j+2 − 2j − 1)/22j+1 < 2−(j−1).

(b) If j = n, then bj − δaj > 0 if and only if δ < 2−n.

Initialize δ1 = 1. We show by induction that δi = 2−(i−1) for each i ∈ [n]. The base
case i = 1 holds by definition. Assume that δi = 2−(i−1) for some i ∈ [n]. By our above

8

observation, bj − δiaj < 0 for j ≥ i and bj − δiaj > 0 for j < i. Hence for all S ⊆ V , S ̸= Ai,

f(S)− δia(S) =
∑
j∈S

(bj − δiaj) >
∑

j∈Ai

(bj − δiaj) = f(Ai)− δia(Ai).

Then Ai is the unique minimizer for ki on the ith iteration of Newton’s algorithm. We also
have that hi = f(Ai)− δia(Ai) < 0, so δi+1 = f(Ai)

a(Ai) = 2−i, completing the induction step.
If i = n + 1, then δn+1 = 2−n. By our above observation again, bj − δn+1aj > 0 for

j ∈ [n− 1], and fn − δn+1an = 0. Hence for all S ⊆ V ,

f(S)− δn+1a(S) ≥ f(An)− δn+1a(An) = 0.

Thus hn+1 = 0, so Newton’s algorithm terminates require exactly n + 1 iterations.

2.3 Future Work
As discussed previously, the discrete Newton’s algorithm terminates after exactly one iter-
ation for modular functions f . Therefore future work in this direction includes finding a
lower bound construction on which the discrete Newton’s algorithm takes Ω(n) iterations
despite the original “good” initialization of δ1. One potential direction could be investigating
submodular extensions of our modular construction for f , such as g(S) = max(f(S), k) for
some constant k.

3 Arbitrary Vectors a

3.1 A Quadratic Upper Bound
We sketch the proof provided by Goemans et al. in [3] for the upper bound on the number
of iterations the discrete Newton’s algorithm takes for an arbitrary vector a. By Lemma 3,
we can obtain another lemma:

Lemma 10 ([3]). We define gi = a(Si). For a discrete Newton’s algorithm terminating in t
iterations, for any i < t, we have

hi+1

hi

+ gi+1

gi

≤ 1.

Using Lemma 10, we partition the iterations into two types, Jg and Jh, where

Jg =
{

i | gi+1

gi

≤ 2
3

}
, Jh = {i ̸∈ Jg}. (6)

By considering the bound on the size of Jg, and the bound on the size of a contiguous
interval of Jh, we can find a bound on the number of iterations.

A bound on Jg is given by Goemans [3] and communicated by Radzik [6].

9

Lemma 11 ([3]). We have that |Jg| = O(n log n).

Proof Sketch. If we consider Jg = {i1, i2, . . . , ik}, then we notice that the monotonicity of g,
as shown in Lemma 3 implies that g is always decreasing. On top of this, since these are all
elements of Jg we get that a(Sij+1) ≤ 2

3a(Sij
). From this, by considering extreme points of

the polytope, it can be shown that the number of sets are k = O(n log n).

Similarly, Geomans et al. [3] shows how to bound an interval in Jh.

Lemma 12 ([3]). Let [u, v] ⊆ Jh. Then [u, v] ≤ n2 + n + 1.

Proof Sketch. We consider the submodular function kv and show that this is a decreasing
geometric sequence, through the equations in Lemma 3 and the equations for a submodular
function. It then can be showed that the ring family generated by Si+1, . . . , Sv−1 does not
contain Si. We show that the maximum element in each Si is decreasing, and hence the sets
are disjoint. Then we can show that with a ground set of size n = |V |, the longest chain of
ring families we could get is n2 + n + 1.

This gives an upper bound of O(n log n)O(n2) = O(n3 log n) on the number of iterations
of the discrete Newton’s algorithm.

We can make this bound tighter by considering the size of Jh.

Theorem 13 ([3]). We have
|Jh| ≤ n2 + O(n log2 n).

Proof Sketch. We use a similar argument to the one used in the proof of Lemma 12. However,
we use a slightly modified bound on f(S) as before, and, using this, we can notice that
within any interval [u, v], the last O(log n) sets may already be in the family, thus reducing
the estimate of |Jh| to get that |Jh| ≤ n2 + O(n log2 n).

From this we are able to get a bound on the discrete Newton’s algorithm for an arbitrary
vector a.

Theorem 14 ([3]). For a submodular function f : 2n → R+ and an arbitrary vector a, the
discrete Newton’s algorithm takes at most n2 + O(n log2(n)) iterations.

3.2 Lower Bounds
Based on our proof of Theorem 9, we observe the following:

Lemma 15. The discrete Newton’s algorithm will terminate within at most n + 1 iterations
for any modular function f .

Proof. Let f : 2V → R be a modular function defined by a vector b ∈ Rn such that f(S) =∑
j∈S bj. Since f is nonnegative and the δ’s are strictly decreasing and nonnegative by Lemma

3, if bj − δiaj > 0 on some iteration i, and aj > 0, then bj − δkaj > 0 for all subsequent
iterations k ≥ i.

Observe that since hi = minS⊆V f(S) − δia(S) = minS⊆V (∑
i∈S fi − δiai), then Si must

consist only of j ∈ [n] such that bj − δiaj ≤ 0. This also implies that aj > 0.

10

Consider x := maxj∈Si
bj/aj, and suppose y := arg maxj∈Si

bj/aj. Notice that by−δay ≥ 0
for all δ ≤ x. We have that bj − xaj ≤ 0 for all j ∈ Si. Then f(Si) − xa(Si) ≤ 0, so
δi+1 = f(Si)/a(Si) ≤ x and by − δi+1ay ≥ 0. Hence after each iteration i, we must have
bj − δi+1aj ≥ 0 for at least one additional j ∈ [n]. Then bj − δi+1aj ≥ 0 for all j ∈ [n] after
at most n iterations, at which point the discrete Newton’s algorithm terminates.

Consequently, if we want a super-linear lower bound on the number of iterations in the
general case, we must turn our attention to submodular functions f that are not modular.

3.2.1 Interval Submodular Functions

We conjecture that interval submodular functions introduced in [3] are promising candidates
for lower bound constructions, as they were used in the proof of Theorem 14 to show a
quadratic tight lower bound on the length of a geometrically increasing sequence of sets
S1, . . . , Sk such that f(Si) ≥ 4f(Si−1).

We define interval submodular functions as follows. For each i, j ∈ [n] with i ≤ j,
we define an interval [i, j] := {k ∈ [n] | i ≤ k ≤ j}. Let the set of all intervals be
I := {[i, j] | i, j ∈ [n], i ≤ j}. A set function f : I → R+, f(∅) = 0 is submodular on
intervals if for any A, B ∈ I such that A ∪B ∈ I, A ∩B ∈ I,

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

For any S ⊆ [n], define I(S) to be the set of maximal intervals contained in S. For example,
if S = {1, 2, 3, 6, 9, 10}, then I(S) = {[1, 3], [6, 6], [9, 10]}. Using the following lemma, we
can extend a function that is submodular on intervals to a (fully) submodular function.

Lemma 16 ([3]). If f : I → R+ such that f(∅) = 0 is submodular on intervals, then the
function g : 2[n] → R+ defined by

g(S) =
∑

I∈I(S)
f(I),

is submodular over the ground set [n].

Moreover, the following lemma helps construct a function that is submodular on intervals.

Lemma 17 ([3]). If τ, κ : [n]→ R+ are monotonically increasing, then the function f : I →
R+ defined by

f([i, j]) = τ(i)κ(j),

is submodular on intervals.

By the above two lemmas, [3] considers τ(i) = 4i and κ(j) = 4j(j−1)/2 and shows that the
submodular function g induced by τ and κ gives a sequence of

(
n+1

2

)
+ 1 sets Ai such that

g(Ai) ≥ 4g(Ai−1).

11

3.2.2 Necessary Conditions

Although it is generally hard to derive conditions that are both necessary and sufficient, it is
sometimes helpful to consider necessary conditions that must be satisfied in order to achieve
ω(n) iterations. In the proof of Theorem 8, the strict nesting of maximal minimizers heavily
constrains the number of iterations of the discrete Newton’s algorithm. We find a necessary
condition that must hold in order for the strong quotient argument to fail and potentially
allow us to construct a longer chain of minimizers by avoiding strict nesting.

Consider minimizers Si and Sj, for i < j. By the submodularity of f , the modularity of
a, and regrouping terms, we have that

f(Si)− δia(Si) + f(Sj)− δja(Sj)
≥ f(Si ∪ Sj) + f(Si ∩ Sj)− δia(Si)− δja(Sj)
= f(Si ∪ Sj) + f(Si ∩ Sj)− δi(a(Si ∪ Sj)− a(Sj \ Si))− δj(a(Si ∪ Sj) + a(Sj \ Si))
= (f(Si ∪ Sj)− δia(Si ∪ Sj)) + (f(Si ∩ Sj)− δja(Si ∩ Sj)) + (δi − δj)a(Sj \ Si). (7)

By Lemma 3, δi > δj, so δi − δj > 0 in the last term of (7). Recall that Si minimizes ki and
Sj minimizes kj. The case where a(Sj \Si) ≥ 0 implies that Si ∪Sj minimizes ki and Si ∩Sj

minimizes kj. This implication is used in the proof of Theorem 8 to derive the containment
of maximal minimizers. Hence to avoid this, we would like the condition a(Sj \ Si) < 0 to
hold at least some of the time. By a similar derivation, we would also like a(Si \ Sj) > 0 to
hold some of the time.

In order to obtain ω(n) iterations in the case of arbitrary a, it is also necessary for some of
the minimizers Si to contain negative elements; i.e. elements j such that aj < 0. Otherwise
we reduce to the case of nonnegative a, which is upper bounded by n + 1 iterations. What
conditions need to be satisfied in order for the discrete Newton’s algorithm to choose a set
containing negative elements as opposed to a set that does not? Since including elements j
where aj < 0 decreases the value of a on the set, we would need the value of f to decrease
sufficiently as well. Suppose A ⊆ V consists only of j such that aj ≥ 0, and suppose
B ⊆ V consists only of j such that aj < 0. Then in order for B to potentially be included
in the minimizer Si, it would be necessary for f(A ∪ B) − δia(A ∪ B) < f(A) − δia(A).
Rearranging gives f(A)− f(A∪B) > δ(a(A)− a(A∪B)). Since a(Si) ≥ 0, this implies that
f(A ∪B) < f(A).

For the submodular extension of f([i, j]) = 4i4j(j−1)/2 in particular, we observe that the
main ways of decreasing its value while including an additional element are by filling in
gaps of size one in order to bridge disjoint but neighboring intervals (for example, [1, 2]∪ [4]
becomes [1, 2, 3, 4]) or decreasing the left endpoint of an interval (for example, [1] ∪ [4, 5]
becomes [1] ∪ [3, 4, 5]).

3.2.3 Dependency of a on |V |

Lemma 18. If a is independent of n = |V | then the discrete Newton’s algorithm will take
at most O(n) steps.

Proof. From Lemma 3, we know that the values of a(Si) are decreasing. Additionally, if
every value of a is independent of n, then a(S1) = O(n) as it is at most n constants being

12

summed. Additionally, since a contains finitely many numbers, the smallest step size – the
minimal difference between two values a(Si) and a(Si+1) – is a given number independent
of n and thus since we know that a(Si) is decreasing with a discrete step size, we know that
the number of iterations it can take is at most the number of iterations we can take while
keeping at(St) ≥ 0. This is O(n) steps.

From this we can note that a constant vector a as proposed in the previous section cannot
give a quadratic bound. However, we can introduce some dependency on n while keeping
the structure of a the same.

3.2.4 Ideas for Minimizers

Based on computational experiments with the submodular extension of f([i, j]) = 4i4j(j−1)/2,
we present a guess for a ∈ Rn and the minimizing sets Si that could potentially give Ω(n2)
iterations of the discrete Newton’s algorithm. Consider a ∈ Rn such that aj < 0 for j ≡ 1
(mod k) for some integer k. We present an example for k = 3, n = 9:

S1 = {2, 3, 5, 6, 8, 9}
S2 = {2, 3, 5, 6, 7, 8, 9}
S3 = {2, 3, 4, 5, 6, 7, 8, 9}
S4 = {1, 2, 3, 4, 5, 6, 7, 8, 9}
S5 = {2, 3, 5, 6, 8}
S6 = {2, 3, 5, 6, 7, 8}
S7 = {2, 3, 4, 5, 6, 7, 8}

...

The general pattern is as follows. Assuming we initialize δ1 to be sufficiently large (say, ∞),
it is optimal for S1 to exclude all negative elements. The next set S2 fills in the rightmost
“gap” where a negative element was excluded. Then S3 fills in the next rightmost “gap”,
and so on until all the gaps are filled, as in S4. The next set S5 then excludes all the
negative elements that were filled in while simultaneously shrinking the rightmost endpoint
from 9 to 8. We then repeat the same pattern of filling in the gaps one-by-one starting
from the right, then removing the gaps and shrinking the right endpoint by one. We stop
when we reach a sufficiently small set, such as {1, 2, 3}. Observe that the length of this
sequence of sets is Θ(n2), since if the rightmost endpoint is j, then it takes ⌈j/k⌉ sets to fill
in the gaps before the endpoint is shrunk to j − 1. Then the total length of the sequence is
k · ⌈n/k⌉+ k · (⌈n/k⌉ − 1) + · · ·+ 2k + 1 = Θ(n2).

We observe this pattern only generally for a specific example we tested, in which a =
(−1, 5, 5,−1, 5, 5,−1 . . .). For this particular case, oftentimes steps in this pattern are
skipped; for example, not all the gaps may be filled in before the right endpoint is de-
creased, or several gaps may be filled simultaneously. If we can find a vector a such that the
pattern is followed more closely, perhaps with slight adjustments such as filling a constant
number of gaps on each iteration, or shrinking the right endpoint by a constant number of
elements, then we could obtain Ω(n2) iterations.

13

We give some intuition for why this pattern might be reasonable. As mentioned in
Section 3.2.4, in order to include a negative element in the minimizer, we need the value of
f to decrease. Filling in the gaps is one way of doing so. We also observe that this satisfies
the condition a(Sj \ Si) < 0 for i < j. Removing all the gaps increases the value of f
despite the value of δ having decreased during the round, so decreasing the right endpoint
compensates in a way. Furthermore, regularly spacing the negative elements guarantees an
even distribution of them despite shrinking the right endpoint.

3.2.5 Future Work on Lower Bound Constructions for Arbitrary a

Finally, we present an outline of what a potential lower bound construction and proof may
entail. As in the proof of Theorem 9, a geometric picture of the lines that contribute to the
piecewise linear function h(δ) = minS f(S)−δa(S) could help guide us toward an appropriate
f and a, as their values on each minimizer Si will be defined by the y-intercepts and slopes,
respectively, of the lines corresponding to the minimizers Si. This geometric picture can also
help us define values for the δi’s, which will be a subset of the δ-intercepts of the lines. A
particularly nice picture would be one in which all lines correspond to the minimizers Si, as
was the case in the proof of Theorem 9. We would also need to construct sets Ai that are
candidates for minimizers that agree with the values derived from the picture.

Ideally we would want to work with interval submodular functions, as they only require
O(n) input parameters, as opposed to an exponential number of input parameters to define
a general submodular function. Once we have defined f , a, and each δi and Ai, it is not
immediately obvious for the case of f not modular how to prove that Ai is indeed the
minimizer of ki among an exponential number of other subsets of V . However, we can use
the following duality theorem from [2].
Theorem 19 ([2]). Let f : 2V → R be a submodular function on a finite ground set V = [n].
Then

min
S

f(S) = max
x∈P (f)

∑
j∈V

min(xj, 0). (8)

We give the proof of one direction of this equality, which is relevant for our purposes.
For any S ⊆ V and any x ∈ P (f), we have that∑

j∈V

min(xj, 0) ≤
∑
j∈S

min(xj, 0) ≤
∑
j∈V

xj ≤ f(S),

since min(xj, 0) ≤ 0 and x ∈ P (f).
To prove that Ai minimizes ki, we simply need to present an x ∈ P (f) such that we

achieve equality in (8); i.e. f(Ai) = ∑
j∈V min(xj, 0). To show that a given x ∈ Rn belongs

to P (f), we can show that it is a convex combination of vertices of P (f) via the following
two theorems from [5].
Theorem 20 ([5]). Let π be a permutation of [n]. Define x(π) ∈ Rn as follows:

x
(π)
π(1) = f({π(1)}),

x
(π)
π(j) = f({π(1), . . . , π(j)})− f({π(1), . . . , π(j − 1)}) for j = 2, . . . , n.

Then x(π) ∈ P (f).

14

Theorem 21 ([5]). Given x∗ ∈ Rn, if there exists a set S of permutations such that

x∗ =
∑
π∈S

λπx(π),

where ∑
π∈S λπ = 1 and λπ ≥ 0 for all π ∈ S, then x∗ ∈ P (f).

The following is an example of how we might apply these theorems to our work. Consider
the submodular extension of f([i, j]) = 4i4j(j−1)/2 on the ground set V = {1, 2, 3}, and
a = (−1, 5, 5).

S = f(S) lS(δ) = f(S)− δa(S) lS(δ) for δ = 42

∅ 0 0 0
{1} 41 41 + δ 20
{1, 2} 42 42 − 4δ −48
{2} 43 43 − 5δ −16
{1, 2, 3} 44 44 − 9δ 112
{2, 3} 45 45 − 10δ 864
{3} 46 46 − 5δ 4016

The set {1, 2} is the unique minimizer of f(S) − δa(S) for δ = 42. Assuming we only
had knowledge of f({1, 2}) − 42a({1, 2}) = −48, we can prove that this is the minimum as
follows. Consider the permutation π = (2, 1, 3). By Theorem 20, we define x213 as follows:

x213
2 = −16 < 0,

x213
1 = −48− (−16) < 0,

x213
3 = 112− (−48) > 0.

Hence, ∑3
j=1 min(x213

j , 0) = −48, which proves that {1, 2} is the minimizer. We also note
that if a submodular function has multiple minimizers, then we have to consider multiple
permutations on [n].

4 Future Directions
In addition to future work on lower bound constructions as mentioned in previous sections,
there are many other problems related to the discrete Newton’s algorithm that remain open.

Firstly, the number of breakpoints on the lower envelope h(δ) = minS f(S)− δa(S) can
give us another insight into the the number of iterations for the discrete Newton’s algorithm.
In any instance of the algorithm, the number of iterations is upper bounded by the number of
breakpoints plus one, because each iteration of the algorithm passes at least one breakpoint
(this can be easily seen by Figure 1). By looking at the breakpoints, one might be able to
find better upper bounds for the discrete Newton’s algorithm. To the best of our knowledge,
nothing is known about the number of breakpoints in the literature. Hence, any linear,
quadratic, polynomial or exponential bound would be interesting.

We can also consider the case where a is not necessarily modular. In particular, we might
be interested in the case where a is the difference of two cut functions in an undirected graph

15

(which are submodular), because this corresponds to the parametric maximum flow problem
in which the edge capacities are linear in the parameter.

There are also variants on the discrete Newton’s algorithm, such as the accelerated dis-
crete Newton’s algorithm by Dadush et al. [1] and another variant which solves the quickest
transshipment problem [8]. These variants are also proved to have quadratic upper bounds,
but we have no knowledge whether there is a matching lower bound.

References
[1] Daniel Dadush, Zhuan Khye Koh, Bento Natura, and László A Végh. An accelerated

newton-dinkelbach method and its application to two variables per inequality systems.
arXiv preprint arXiv:2004.08634, 2020.

[2] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Guy, R.,
Hanani, H.,Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Ap-
plications. Gordon and Breach, 1970.

[3] Michel X Goemans, Swati Gupta, and Patrick Jaillet. Discrete newton’s algorithm for
parametric submodular function minimization. In International Conference on Integer
Programming and Combinatorial Optimization, pages 212–227. Springer, 2017.

[4] Satoru Iwata, Kazuo Murota, and Maiko Shigeno. A fast parametric submodular in-
tersection algorithm for strong map sequences. Mathematics of Operations Research,
22(4):803–813, 1997.

[5] László Lovász. Submodular functions and convexity. In Mathematical programming the
state of the art, pages 235–257. Springer, 1983.

[6] Tomasz Radzik. Fractional combinatorial optimization. In Handbook of combinatorial
optimization, pages 429–478. Springer, 1998.

[7] Miriam Schlöter. Flows over time and submodular function minimization. Technische
Universitaet Berlin (Germany), 2018.

[8] Miriam Schlöter, Martin Skutella, and Khai Van Tran. A faster algorithm for quickest
transshipments via an extended discrete newton method. In Proceedings of the 2022
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 90–102. SIAM,
2022.

[9] Donald M Topkis. Minimizing a submodular function on a lattice. Operations research,
26(2):305–321, 1978.

16

	Introduction
	Submodular Functions
	Submodular Line Search and Discrete Newton's Algorithm
	Outline
	Acknowledgements

	Nonnegative Vectors a
	A Linear Upper Bound
	A Matching Lower Bound With a Relaxed Initial
	Future Work

	Arbitrary Vectors a
	A Quadratic Upper Bound
	Lower Bounds
	Interval Submodular Functions
	Necessary Conditions
	Dependency of a on |V|
	Ideas for Minimizers
	Future Work on Lower Bound Constructions for Arbitrary a

	Future Directions

